小行星探测器附着碎石层的稳定性分析方法

王辉1,董洋1,丁建中1,刘学翱1,王春洁1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (23) : 129-139.

PDF(3353 KB)
PDF(3353 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (23) : 129-139.
论文

小行星探测器附着碎石层的稳定性分析方法

  • 王辉1,董洋1,丁建中1,刘学翱1,王春洁1,2
作者信息 +

Stability analysis method of asteroid detector attached to gravel layer

  • WANG Hui1, DONG Yang1, DING Jianzhong1, LIU Xueao1, WANG Chunjie1,2
Author information +
文章历史 +

摘要

小行星探测器在星体表面的稳固附着是探测任务的关键所在。本文以某型小行星探测器为研究对象,将离散元方法和多体动力学仿真方法相结合,建立了同时考虑缓冲机构作用和碎石层碰撞作用的耦合仿真模型,用来分析小行星探测器在碎石层的附着稳定性。而后,给出了探测器附着稳定性的综合评价参数,并在此基础上,针对典型附着工况,采用耦合仿真模型分析了探测器的附着稳定性。在特定的竖直速度下,通过全因子试验设计方法选取样本点,基于耦合仿真模型的计算结果,利用三阶多项式建立性能评价参数关于不同碎石层坡度、探测器水平速度和偏航角的代理模型,并利用代理模型确定了探测器的附着稳定性边界,分析了不同工况参数下的稳定性边界变化趋势。最后,根据稳定性边界分析结果,确定了三组恶劣附着工况,并在此基础上分析了竖直速度对附着稳定性的影响。本文提出的研究方法对于我国未来小行星附着探测任务的顺利开展具有一定的指导意义。
关键词:小行星探测;多体动力学;离散元;耦合仿真;稳定性分析

Abstract

The solid attachment of the asteroid probe on the surface of the star is the key to the mission. This paper takes a certain type of asteroid detector as the research object, combines the discrete element method with the multi-body dynamics simulation method, and establishes a coupled simulation model that considers the effect of the buffer mechanism and the impact of the gravel layer at the same time to analyze the asteroid detection The adhesion stability of the device on the gravel layer. Then, the comprehensive evaluation parameters of the attachment stability of the detector are given, and on this basis, the coupling simulation model is used to analyze the attachment stability of the detector according to the typical working conditions. At a specific vertical velocity, sample points are selected through the full factorial experimental design method, and based on the calculation results of the coupled simulation model, Using third-order polynomials to establish surrogate models of performance evaluation parameters for different gravel layer slopes, detector horizontal speeds and yaw angles. Using the surrogate model to determine the attachment stability boundary of the detector, the stability boundary change trend under different working condition parameters is analyzed. Finally, according to the results of the stability boundary analysis, three groups of severe attachment conditions are determined, and on this basis, the influence of the vertical velocity on the attachment stability is analyzed. The research method proposed in this paper has certain guiding significance for the smooth development of my country's future asteroid exploration missions.
Key words: asteroid detection; multi-body dynamics; discrete element; coupled simulation; stability analysis

关键词

小行星探测 / 多体动力学 / 离散元 / 耦合仿真 / 稳定性分析

Key words

 asteroid detection / multi-body dynamics / discrete element / coupled simulation / stability analysis

引用本文

导出引用
王辉1,董洋1,丁建中1,刘学翱1,王春洁1,2. 小行星探测器附着碎石层的稳定性分析方法[J]. 振动与冲击, 2022, 41(23): 129-139
WANG Hui1, DONG Yang1, DING Jianzhong1, LIU Xueao1, WANG Chunjie1,2. Stability analysis method of asteroid detector attached to gravel layer[J]. Journal of Vibration and Shock, 2022, 41(23): 129-139

参考文献

[1] 初海洋. 基于感应磁阻尼原理的微重力着陆缓冲器研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
CHU Hai-yang. The research on inductive magnetic damping landing buffer[D]. Harbin: Harbin Institute of Technology, 2011.
[2] 王立武, 戈嗣诚, 蒋万松. 小行星探测器着陆附着技术研究[J]. 航天返回与遥感, 2019, 40(03): 14-23.
WANG Li-wu, GE Si-cheng, JIANG Wan-song. Research on lander adhering and recovery technology for asteroid exploration[J]. Spacecraft Recovery &Remote Sensing, 2019, 40(03): 14-23.
[3] 申一霖. 小行星探测器电磁阻尼式着陆缓冲装置设计及试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
SHEN Yi-lin. Design and experimental study of electromagnetic damping landing buffer device for asteroid probe[D]. Harbin: Harbin Institute of Technology, 2020.
[4] 逯运通, 宋顺广, 王春洁, 等. 基于刚柔耦合模型的月球着陆器动力学分析[J]. 北京航空航天大学学报, 2010, 036(011): 1348-1352.
LU Yun-tong, SONG Shun-guang, WANG Chun-jie, et al. Dynamic analysis for lunar lander based on rigid-flexible coupled model [J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 036(011): 1348-1352.
[5] 董洋, 王春洁, 吴宏宇, 等. 触地关机模式下的着陆器软着陆稳定性研究[J]. 北京航空航天大学学报, 2019,45(02): 317-324.
DONG Yang, WANG Chun-jie, WU Hong-yu, et al. Soft landing stability of lander in mode of shutdown at touchdown[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(02): 317-324.
[6] 林轻, 聂宏, 徐磊, 等. 月球着陆器软着陆稳定性关键影响因素分析[J]. 南京航空航天大学学报, 2012, 44(02): 152-158.
LIN Qing, NIE Hong, XU Lei, et al. Analysis on Key Influence Factors of Soft-Landing Stability in Lunar Lander[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(02): 152-158.
[7] 王英超,高海波,于海涛, 等. 垂直降落运载器着陆动力学建模与稳定性分析[J]. 机械工程学报, 2020, 56(11): 37-47.
WANG Ying-chao, GAO Hai-bo, YU Hai-tao, et al. Landing Dynamics Modeling and Stability Analysis of Vertical-landing Carrier[J]. Journal of Mechanical Engineering, 2020, 56(11): 37-47.
[8] 吴宏宇, 王春洁, 丁宗茂, 等. 着陆姿态不确定下的着陆器缓冲机构优化设计[J]. 宇航学报, 2018, 39(12): 1323-1331.
WU Hong-yu, WANG Chun-jie, DING Zong-mao, et al. Optimization Design of a Landing Gear under Uncertain Landing Attitude[J]. Journal of Astronautics, 2018, 39(12): 1323-1331.
[9] 吴宏宇, 王春洁, 丁宗茂, 等. 两种着陆模式下的着陆器缓冲机构构型优化[J]. 宇航学报, 2017, 38(10): 1032-1040.
WU Hong-yu, WANG Chun-jie, DING Zong-mao, et al. Configuration optimization of landing gear under two kinds of landing modes[J]. Journal of Astronautics, 2017, 38(10): 1032-1040.
[10] WITTE L, ROLL R, BIELE J, et al. Rosetta lander philae - landing performance and touchdown safety assessment[J]. Acta astronautica, 2016, 125: 149-160.
[11] 赵志军, 赵京东, 刘宏. 小行星着陆装置着陆动力学及着陆性能分析[J]. 北京航空航天大学学报, 2013, 39(12): 1676-1681.
ZHAO Zhi-jun, ZHAO Jing-dong. LIU Hong. Development of the landing dynamic and performance of an asteroid landing mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(12): 1676-1681.
[12] 王永滨, 王立武, 武士轻, 等. 基于离散元理论的月球着陆器月面着陆冲击碰撞特性研究[J]. 航天返回与遥感, 2020, 41(05): 21-28.
WANG Yong-bin, WANG Li-wu, WU Shi-qing, et al. Investigation of the lunar landing impact characteristics for the lunar regolith base on theory of the discrete element method[J]. Spacecraft Recovery &Remote Sensing, 2020, 41(05): 21-28.
[13] 梁绍敏, 王永滨, 季顺迎. 基于离散元方法的月球着陆器冲击月壤过程分析[J]. 航天返回与遥感, 2017, 38(04): 55-63.
LIANG Shao-min, WANG Yong-bin, JI Shun-ying. Analysis of landing impact process of lunar landing lander based on discrete element method[J]. Spacecraft Recovery &Remote Sensing, 2017, 38(04): 55-63.
[14] 林云成, 李立犇, 赵振家, 等. 着陆器足垫冲击月壤动态行为离散元仿真分析[J].深空探测学报,2020,7(02): 171-177.
LIN Yun-cheng, LI Li-ben, ZHAO Zhen-jia, et al. Simulation analysis of dynamic behavior of lander footpad impact on lunar regolith[J]. Journal of Deep Space Exploration, 2020, 7(2): 171-177.
[15] 武士轻, 王永滨, 候绪研, 等. 足垫垂直冲击月壤理论模型研究[J]. 载人航天, 2020, 26(02): 135-141.
WU Shi-qing, WANG Yong-bin, HOU Xu-yan, et al. Research on theoretical model of vertical impact of foot pad on lunar soil[J]. Manned spaceflight, 2020, 26(02): 135-141.
[16] HOU X, XUE P, ZHANG K, et al. Simulation and research on landing impact between lander and lunar regolith based on DEM[C]. IEEE International Conference on Mechatronics & Automation. IEEE, 2016.
[17] 赵京东, 王金昌, 赵志军, 等. 基于半主动控制的小天体着陆器缓冲器的研究[J]. 振动与冲击, 2010, 29(08): 78-80+98+243.
[18] 叶阳, 曾亚武, 曾超, 等. 花岗岩球砾法向恢复系数试验研究[J]. 岩石力学与工程学报,2017,36(03):633-643.
YE Yang, ZENG Ya-wu, ZENG Chao, et al. Experimental study on the normal restitution coefficient of granite spheres[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(03): 633-643.
[19] 程彬, 于洋, 宝音贺西. 小天体接触探测颗粒动力学研究进展. 中国科学: 技术科学, 2021, 51:
CHENG Bin, YU Yang, Baoyin He-Xi. Recent advances in granular dynamics for small-body touchdown missions (in Chinese). Sci Sin Tech, 2021, 51, doi:10.1360/SST-2021-0169.
[20] 刘德赟, 赖小明, 王露斯, 等. 小天体表面采样技术综述[J]. 深空探测学报, 2018, 5(03): 246-261.
LIU De-yun, LAI Xiao-min, WANG Lu-si, et al. Summary of Sampling Technology for Small Celestial Bodies[J]. Journal Of Deep Space Exploration, 2018, 5(03): 246-261.
[21] 胡国明. 颗粒系统的离散元素法分析仿真:离散元素法的工业应用与EDEM软件简介[M]. 武汉: 武汉理工大学出版社, 2010.
HU Guo-ming. Discrete element analysis and Simulation of particle system: industrial application of discrete element method and brief introduction of edem software[M]. Wuhan: Wuhan University of Technology Press, 2010.
[22] CAO P, HOU X Y, WANG Y B, et al. Flexible Airbag Cushioning for Martian Landing Based on Discrete Element Method[J]. Advances in Space Research, 2019, 63(8): 2566-2583.
[23] 张涛. 圆柱螺旋弹簧的参数化设计及分析[D]. 燕山: 燕山大学, 2012.
ZHANG Tao. Parametric design and analysis of cylindrical spiral spring[D]. Yanshan: Yanshan University, 2012.
[24] 季顺迎, 樊利芳, 梁绍敏. 基于离散元方法的颗粒材料缓冲性能及影响因素分析[J]. 物理学报, 2016, 65(10): 168-180.
JI Shun-ying, FAN Li-fang, LIANG Shao-min. Buffer capacity of granular materials and its influencing factors based on discrete element method[J]. Acta Physica Sinica, 2016, 65(10): 168-180.
[25] WANG H, HE T Y,WANG C J. A comprehensive performance optimization method for the honeycomb buffer of a legged-type lander[J]. Aircraft Engineering and Aerospace Technology, 2021, 93(5): 821-831.
[26] 王家俊, 王春洁, 宋顺广. 基于响应面法的月球着陆器软着陆性能优化[J]. 北京航空航天大学学报, 2014, 40(05): 707-711.
WANG Jia-Jun, WANG Chun-jie, SONG Sun-guang. Performance optimization of lunar lander based on response surface methodology[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(05): 707-711.

PDF(3353 KB)

Accesses

Citation

Detail

段落导航
相关文章

/