为了验证电磁惯性质量阻尼器(EIMD)对斜拉索自由振动的减振效果,基于D’Alembert原理建立EIMD与斜拉索共同作用的非线性自由振动方程。在误差允许范围内忽略抗弯刚度,拉索自身纵向惯性力和阻尼力,以及外部动态荷载的情况下,研究平面内横向振动、平面外振动的拉索动位移。通过标准伽辽金(Galerkin)法简化振动方程,搭建Simulink动力仿真模型对拉索振动方程进行数值模拟计算,得出斜拉索跨中平面内外位移-时间曲线。通过对比拉索自由振动位移可以得出:安装EIMD后,斜拉索平面内振动位移相较于原索振动降低73.3%,平面外振动位移相较于原索振动降低72.5%。建立并求解斜拉索-EIMD线性自由振动方程,分析拉索垂度对阻尼器控制效果的影响程度。
关键词:电磁惯性质量阻尼器;拉索自由振动;减振;电能
Abstract
In order to verify the damping effect of Electromagnetic Inertial Mass Dampers (EIMD) on free vibration of stay cables, a nonlinear free vibration equation of EIMD and stay cables is established based on the D’Alembert principle. within the error allowable range,Under the condition of ignoring bending stiffness, longitudinal inertia force and damping force of cable itself, and external dynamic load , the dynamic displacement of cable under lateral vibration in-plane and vibration out-of-plane is studied.The vibration equation is simplified by the standard Galerkin method, and the Simulink dynamic simulation model is built to perform numerical simulation calculation on the cable vibration equation, and the in- and out-of-plane displacement-time curve of the stay cable is obtained.By comparing the free vibration displacement of the stay cable, it can be concluded that after installing the EIMD, compared with the original cable vibration,the in-plane vibration displacement of the stay cable is reduced by 73.3% , and the out-of-plane vibration displacement is reduced by 72.5% compared with the original cable vibration.Establish and solve the cable-EIMD linear free vibration equation, and analyze the influence of cable sag on the control effect of the damper.
Key words: Electromagnetic Inertial Mass Damper; Free vibration of cable ; Damping;Electricity
关键词
电磁惯性质量阻尼器 /
拉索自由振动 /
减振 /
电能
{{custom_keyword}} /
Key words
Electromagnetic Inertial Mass Damper /
Free vibration of cable /
Damping;Electricity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] DEN HARTOG J P. Mechanical vibrations[M]. New York: Mc Craw Hill,1956.
[2] Kareem A, Kijewski T, Tamura Y. Mitigation of motions of tall buildings with specific examples of recent applications[J]. Wind and structures, 1999, 2(3): 201-251.
[3] 李祥秀,谭平,刘良坤,张颖,闫维明,周福霖.基于功率法的TMD系统参数优化与减振性能分析[J].振动与冲击,2014,33(17):6-11+17.
LI Xiangxiu,TAN Ping,LIU Liangkun,et al.Parametetric optimization and aseismic performance of a TMD system based on power method[J].Journal of Vibration and Shock,2014,33( 17) : 6-11+17.
[4] 李春祥,杜冬.MTMD对结构刚度和质量参数摄动的鲁棒性[J].振动与冲击,2004(01):40-42+130-131.
LI Chunxiang,DU dong.Robustness of MTMD to perturbation in structural stiffness and mass[J].Journal of Vibration and Shock,2004(01):40-42+130-131.
[5] 倪铭,闫维明,许维炳,王瑾.简谐激励下双调谐质量阻尼器基本特性研究[J].振动与冲击,2015,34(17):213-219.
NI Ming,YAN Weiming,XU Weibing,et al.Fundamental characteristics of a double-tuned mass damper under simpleharmonical excitations[J].Journal of Vibration and Shock,2015,34( 17) : 213-219.
[6] Wang Z H, Gao H, Fan B, et al. Inertial mass damper for vibration control of cable with sag[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2020, 39(3): 749-760.
[7] 陈政清,汪志昊.基于能量回收的土木工程结构振动控制[J].建筑科学与工程学报,2009,26(02):9-14+20.
CHEN Zhengqing,WANG Zhihao.Structrual vibration control based on energy harvesting in civil engineering[J].Journal of Architecture and Civil Engineering,2009,26(02):9-14+20.
[8] 汪志昊,陈政清.基于振动能量回收的自供电MR阻尼器集成与试验研究[J].振动与冲击,2013,32(12):88-94.
WANG Zhihao,CHEN Zhengqing.Integration and test for a self-powered MR damper based on vibrational energy harvesting[J].Journal of Vibration and Shock,2013,32 ( 12) : 88-94.
[9] 汪志昊,寇琛,许艳伟,郜辉.自供电MR阻尼器复合减振系统对斜拉索振动控制试验研究[J].振动与冲击,2019,38(10):1-5+14.
WANG Zhihao,KOU Chen,XU Yanwai,et al. Experimental Research on the Control of Stay Cable Vibration by Self-powered MR Damper Compound Damping System[J]. Journal of Vibration and Shock,2019,38(10):1-5+14.
[10] Zuo L, Tang X. Large-scale vibration energy harvesting[J]. Journal of intelligent material systems and structures, 2013, 24(11): 1405-1430.
[11] Zhu S, Shen W, Xu Y. Linear electromagnetic devices for vibration damping and energy harvesting: Modeling and testing[J]. Engineering Structures, 2012, 34: 198-212.
[12] Shen W, Zhu S. Harvesting energy via electromagnetic damper: Application to bridge stay cables[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(1): 3-19.
[13] Nakamura Y, Fukukita A, Tamura K, et al. Seismic response control using electromagnetic inertial mass dampers[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(4): 507-527.
[14] 孙洪鑫,罗一帆,杨国松,王修勇.电磁集能式调谐质量阻尼器的结构减震及能量收集分析[J].振动与冲击,2017,36(15):51-56.
SUN Hongxin,LUO Yifan,YANG Guoyun,et al. Analysis of structural vibration reduction and energy harvesting of electromagnetic energy-collecting tuned mass damper[J]. Journal of Vibration and Shock,2017,36(15):51-56.
[15] Nakamura Y, Fukukita A, Tamura K, et al. Seismic response control using electromagnetic inertial mass dampers[J]. Earthquake Engineering & Structural Dynamics. 2014, 43(4): 507-527.
[16] Zhu H P, Li Y, Shen W, et al. Mechanical and energy-harvesting model for electromagnetic inertial mass dampers[J]. Mechanical Systems and Signal Processing. 2019, 120: 203-220.
[17] 汪志昊,郜辉,许艳伟,陈政清.惯性质量对斜拉索阻尼器减振增效作用试验研究[J].振动工程学报,2019,32(03):377-385.
[18] Zhou Q, Nielsen S R K, Qu W L. Semi-active control of shallow cables with magnetorheological dampers under harmonic axial support motion[J]. Journal of Sound and Vibration. 2008, 311(3-5):
[19] El-Attar M, Ghobarah A, Aziz T S. Non-linear cable response to multiple support periodic excitation[J]. Engineering structures, 2000, 22(10): 1301-1312.
[20] Johnson E A, Baker G A, Spencer B F, et al. Semiactive Damping of Stay Cables[J]. Journal of engineering mechanics. 2007, 133(1): 1-11.
[21] Xu Y L, Yu Z. Mitigation of three-dimensional vibration of inclined sag cable using disrete oil dampers—II. Application[J]. Journal of Sound and Vibration, 1998, 214(4): 675-693.
[22] Wang Z H, Gao H, Fan B, et al. Inertial mass damper for vibration control of cable with sag[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2020, 39(3): 749-760.
[23] Krenk S, Nielsen S R K. Vibrations of a shallow cable with a viscous damper[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2002, 458(2018): 339-357.
[24] Irvine H M, Caughey T K. The linear theory of free vibrations of a suspended cable[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1974, 341(1626): 299-315.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}