流致涡激振动压电发电风能采集技术模拟研究

杜小振,P.A.Mbango-Ngoma,常恒,张咪,王宇

振动与冲击 ›› 2022, Vol. 41 ›› Issue (23) : 168-174.

PDF(3422 KB)
PDF(3422 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (23) : 168-174.
论文

流致涡激振动压电发电风能采集技术模拟研究

  • 杜小振,P.A.Mbango-Ngoma,常恒,张咪,王宇
作者信息 +

Wind energy collection technology simulation with flow-induced VIV piezoelectric film for power generation

  • DU Xiaozhen, Mbango-Ngoma, P.A., CHANG Heng, ZHANG Mi, WANG Yu
Author information +
文章历史 +

摘要

为了实现风能驱动压电能量采集器振动发电,给野外生态环境检测传感器长期供能。研究流致涡激振动将层流风能转换为高频振动,提高压电发电效率。基于ANSYS流场分析的CFD数值仿真分析软件建立涡激振动尾流区域流场压电俘能发电模型。设置多个流场激振特性监测点,分析流经钝体产生的涡街脱落尾流区空气压强,模拟波动气压驱动压电振动发电输出特性。采用三种钝体结构分析不同风速作用下钝体尾流区域漩涡脱落特性,研究钝体尾流区压力变化情况,优化系统气流动态特性,获取最佳能量采集区域。将涡激振动引起的波动空气流场与聚偏氟乙烯(PVDF)压电薄膜结构结合,分析流致涡激压电薄膜振动变形特性与和输出电能。结果表明:尾流区域各点振动强度存在较大差别;风速增加,涡激振动频率增显著加;三角形钝体尾流区涡激振动强度较高,压电发电输出能量提高。
关键词:风能;涡激振动;压电能采集;PVDF;自供能

Abstract

Piezoelectric energy harvester (PEH) from wind energy is promising to provide long-term electric power for ecological environment monitoring sensors. In order to improve the output efficiency of piezoelectric power generation, vortex-induced vibration (VIV) is used to transform laminar airflow into high-frequency vibration. The ANSYS CFD numerical simulation model is established to analyze the wake flow field of VIV and PEH devices. Several monitoring points of flow field excitation characteristics were set up to analyze the air pressure generated by vortex street shedding from the wake region downstream of the blunt body. Meanwhile, the output characteristics of piezoelectric vibration excited by fluctuating pressure were simulated. Three kinds of bluff body shapes were used to evaluate vortex shedding strength in the wake area with the various wind speeds. The air pressure is discussed to explore the optimum area for energy harvesting. The airflow vortex-induced PVDF(Polyvinylidene fluoride)piezoelectric film deforms to generate electric power. The results show that the vibration intensity varies greatly in the wake region. Furthermore, it is higher with the triangular bluff body. The vortex-induced vibration frequency increases with the increase of wind speed. Meanwhile, the piezoelectric generation power is improved significantly. 
Keywords: wind energy; vortex vibration; piezoelectric energy harvesting; PVDF; self-power

关键词

风能 / 涡激振动 / 压电能采集 / PVDF / 自供能

Key words

wind energy / vortex vibration / piezoelectric energy harvesting / PVDF / self-power

引用本文

导出引用
杜小振,P.A.Mbango-Ngoma,常恒,张咪,王宇. 流致涡激振动压电发电风能采集技术模拟研究[J]. 振动与冲击, 2022, 41(23): 168-174
DU Xiaozhen, Mbango-Ngoma, P.A., CHANG Heng, ZHANG Mi, WANG Yu. Wind energy collection technology simulation with flow-induced VIV piezoelectric film for power generation[J]. Journal of Vibration and Shock, 2022, 41(23): 168-174

参考文献

[1] LIU H, ZHONG J, LEE C, et al. A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications[Z]. 2018: 5, 41306.
[2]宋汝君,单小彪,杨先海,等. 基于压电俘能器的流体能量俘获技术研究现状[J]. 振动与冲击. 2019, 38(17): 244-250, 275.
SONG Rujun, SHAN Xiaobiao, YANG Xianhai, et al. A review of fluid energy capture technology based on piezoelectric energy harvesters[J]. Journal of vibration and shock,2019, 38(17): 244-250, 275.
[3]WU W, Wang J. Vortex-induced vibrations of a circular cylinder with two symmetrically arranged control rods[J]. Fluid Dynamics Research. 2020, 52(3): 35505.
[4] HU G, TSE K T, WEI M, et al. Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments[J]. Applied Energy. 2018, 226: 682-689.
[5]王世龙, 王海峰, 孙凯利,等. 涡激振动作用下压电悬臂梁俘能器的仿真分析[J].青岛大学学报(工程技术版). 2020, 35(01): 89-93.
WANG Shilong, WANG Haifeng, SUN Kaili, et al, Simulation analysis of piezoelectric cantilever beam capacitor under votex-induced vibration[J]. Journal of Qingdao University(E&T),2020, 35(01): 89-93.
[6]HU J, PENG H, LIU T, et al. A flow sensing method of power spectrum based on piezoelectric effect and vortex-induced vibrations[J]. Measurement. 2019, 131: 473-481.
[7] WANG J, ZHOU S, ZHANG Z, et al. High-performance piezoelectric wind energy harvester with Y-shaped attachments[J]. Energy Conversion and Management. 2019, 181: 645-652.
[8]DAI H L, Abdelkefi A, YANG Y, et al. Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations[J]. Applied Physics Letters. 2016, 108(5): 53902.
[9] SU W, LIN W. Design and analysis of a vortex-induced bi-directional piezoelectric energy harvester[J]. International Journal of Mechanical Sciences. 2020, 173: 105457.
[10]宋汝君,单小彪,李晋哲,等. 压电俘能器涡激振动俘能的建模与实验研究[J]. 西安交通大学学报. 2016, 50(02): 55-60.
SONG Rujun, SHAN Xiaobiao, LI Jinzhe, et al. Modeling and experiment study of piezoelectric energy harvester under vortex-induced vibration[J].Journal of Xi'an Jiaotong University.,2016, 50(02): 55-60.
[11]赵道利,刘园园,周捷,等. 低速水流下不同截面形状质量块压电能量收集器的实验研究[J]. 固体力学学报. 2019, 40(05): 417-426.
ZHAO Daoli, LIU yuanyuan, ZHOU jie, et al.Experimental research on piezoelectric energy harvester with tip masses of different cross-sectional shapes in low water flow velocity[J].Journal of Solid Mechanics,2019, 40(05): 417-426.
[12]SUN W, Seok J. A novel self-tuning wind energy harvester with a slidable bluff body using vortex-induced vibration[J]. Energy Conversion and Management. 2020, 205: 112472.
[13] WANG J, HU G, SU Z, et al. A cross-coupled dual-beam for multi-directional energy harvesting from vortex induced vibrations[J]. Smart Materials and Structures. 2019, 28(12): 12L.
[14]王定标, 苏震, 史兆臣, 等. 基于等效电路法的变三角截面驰振压电能量收集研究[J]. 固体力学学报. 2019, 40(5): 441-450.
WNAG Dingbiao, SU Zhen, SHI Zhaochen, et al.Research on piezoelectric energy harvesting of variable triangular cross-sections based on equivalent circuit method[J].Journal of Solid Mechanics,2019, 40(5): 441-450.
[15]HU Y, YANG B, CHEN X, et al. Modeling and experimental study of a piezoelectric energy harvester from vortex shedding-induced vibration[J]. Energy Conversion and Management. 2018, 162: 145-158.
[16]郭修宇,王海峰,李海宁,等.风力场中基于钝体绕流的压电俘能研究[J].青岛大学学报(工程技术版)2019, 34(03): 79-83.
GUO Xiuyu, WANG Haifeng, LI Haining, et al. Piezoelectric capacitance study based on flow around bluff body in wind field[J]. Journal of Qingdao University(E&T),2029, 34(03): 79-83.

PDF(3422 KB)

Accesses

Citation

Detail

段落导航
相关文章

/