滚石冲击EPE-砂土复合垫层明洞动力响应研究

王东坡1,易雪斌1,周良坤2,闫帅星1,刘彦辉3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (23) : 211-221.

PDF(4154 KB)
PDF(4154 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (23) : 211-221.
论文

滚石冲击EPE-砂土复合垫层明洞动力响应研究

  • 王东坡1,易雪斌1,周良坤2,闫帅星1,刘彦辉3
作者信息 +

Dynamic response of open cut tunnel with EPE-sand composite cushion under rolling stone impact

  • WANG Dongpo1, YI Xuebin1, ZHOU Liangkun2, YAN Shuaixing1, LIU Yanhui3
Author information +
文章历史 +

摘要

明洞顶部铺设缓冲垫层是提升明洞结构抗滚石冲击性能的重要措施之一,传统垫层主要以砂土材料为主,存在自重大、缓冲效果差等缺点。为此,引入具有轻质、高回弹性能的发泡聚乙烯(EPE)材料,并与砂土组成EPE-砂土复合明洞垫层结构,采用物理模型试验及数值模拟手段,开展滚石冲击EPE-砂土复合垫层明洞动力响应研究及优化设计。研究表明:当垫层总厚度一定时,与传统砂土垫层、纯EPE垫层相比,EPE-砂土复合垫层在减缓滚石冲击力和降低下覆顶板应力及位移上均表现出更好的耗能缓冲效果;进一步,将EPE-砂土复合垫层应用于汶马高速桑坪隧道明洞工程中,通过多组工况数值模拟计算表明:当垫层总厚度设计为1.5 m时,在最大滚石设计冲击能级(1621 kJ)条件下,EPE-砂土复合垫层采用厚度比值为4:1(砂土材料1.2 m,EPE材料0.3 m)时具有最佳防护效果。研究成果可为明洞工程EPE-砂土复合垫层设计提供理论依据及技术支持。
关键词:滚石;EPE-砂土复合垫层;动力响应;优化设计

Abstract

The cushion layer on the roof of the rock-shed can effectively improve the mechanical performance of structure. But the traditional sand cushion has shortcomings such as large weight and poor buffering effect. Therefore, proposing an EPE-Sand composite cushion composed of light and high resilience foamed polyethylene (EPE) material and sand to overcome the above problems, and the research of dynamic response and optimization design of rock-shed with EPE-Sand composite cushion is carried out through physical model test and numerical simulation. The results show that when the thickness of cushion layer is certain, EPE-Sand composite cushion has better energy dissipation effect on reducing the impact force of rockfall and the stress of the overlying roof compared with traditional sand cushion and pure EPE cushion. The performance of EPE-Sand composite cushion in practical engineering is verified relying on the rock-shed project in the Sangping tunnel of Wenchuan-Maerkang expressway, the numerical simulation results show that when the total thickness of the cushion is designed to be 1.5 m and under the conditions of the maximum rolling stone design impact energy level (1621 kJ), the EPE-Sand composite cushion has the best protection effect when the thickness ratio is 4:1 (sand material 1.2 m, EPE material 0.3 m).The research results can provide theoretical basis and technical support for the design of EPE-Sand composite cushion of rock-shed projects.
Key words: Rockfall; EPE-Sand composite cushion; Dynamic response; optimization design

关键词

滚石 / EPE-砂土复合垫层 / 动力响应 / 优化设计

Key words

Rockfall / EPE-Sand composite cushion / Dynamic response / optimization design

引用本文

导出引用
王东坡1,易雪斌1,周良坤2,闫帅星1,刘彦辉3. 滚石冲击EPE-砂土复合垫层明洞动力响应研究[J]. 振动与冲击, 2022, 41(23): 211-221
WANG Dongpo1, YI Xuebin1, ZHOU Liangkun2, YAN Shuaixing1, LIU Yanhui3. Dynamic response of open cut tunnel with EPE-sand composite cushion under rolling stone impact[J]. Journal of Vibration and Shock, 2022, 41(23): 211-221

参考文献

[1] 何思明,沈均,吴永. 滚石冲击荷载下棚洞结构动力响应[J]. 岩土力学,2011, 32(3): 781-788.
HE Si-ming, SHEN Jun, WU Yong. Dynamic response study on rock shed under impact of rock-fall[J]. Rock and Soil Mechanics,2011(3): 781-788.
[2] 王玉锁,周良,李正辉,等. 落石冲击下单压式拱形明洞的力学响应[J]. 西南交通大学学报,2017, 52(3): 505-515.
WANG Yu-suo, ZHOU Liang, LI Zheng-hui, et al. Mechanical Responses of Single-Pressure Arch-Shaped Rock-shed Structure under Rockfall Impaction[J]. Journal of Southwest Jiaotong University, 2017, 52(3): 505-515.
[3] Kishi N, Konno H, Ikeda K, et al. Prototype impact tests on ultimate impact resistance of PC rock-sheds[J]. 2002, 27(9): 969-985.
[4] 石少卿,刘仁辉,汪敏. 钢板-泡沫铝-钢板新型复合结构降低爆炸冲击波性能研究[J]. 振动与冲击, 2008, 27(4): 143-147.
SHI Shao-qing, LIU Ren-hui, WANG Ming. Shock Wave Reduction Behavior of a New Compound Structure Composed of A Foam Aluminum Layer Between Two Steel Plates[J]. Journal of Vibration and Shock 2008, 27(4). 143-147.
[5] 康建功,石少卿,陈进. 泡沫铝衰减冲击波压力的理论分析[J]. 振动与冲击, 2010, 29(12): 128-131.
KANG Jian-gong, SHI Shao-qing, Chen Jin. Analysis of cladding aluminum foam attenuating blasting pressure[J]. Journal of Vibration and Shock 2010, 29(12): 128-131.
[6] 王东坡,何思明,欧阳朝军,等. 滚石冲击荷载下棚洞钢筋混凝土板动力响应研究[J]. 岩土力学, 2013, 34(003): 881-886.
WANG Dong-po, HE Si-ming, OUYANG Chao-jun, et al. Study of dynamic response of shed reinforced concrete slab to impact load of rock-fall[J]. Rock and Soil Mechanics, 2013, 34(3): 881-886.
[7] 闫帅星,何思明,李新坡. 滚石冲击作用下钢筋混凝土棚洞板动力学响应及冲切损伤评估研究[J]. 兰州大学学报(自然科学版), 2019, 55(1): 64-72.
YAN Shuai-xing, HE Si-ming, LI Xin-po. Dynamic responses and punching damage assessment of a reinforced concrete slab impacted by rock-falls[J]. Journal of Lanzhou University(Natural Sciences), 2019, 55(1): 64-72.
[8] 程鹏,李伟,翟敏刚,等. 双层泡沫铝夹芯板抗滚石冲击结构性能优化研究[J]. 振动与冲击, 2018, 37(5): 85-91.
CHEN Peng, LI Wei, ZHAI Min-gang, et al. Structure performance optimization of double-layer aluminum foam sandwich panels under rockfalls impact[J]. Journal of Vibration and Shock, 2018, 37(5): 85-91.
[9] 王东坡,何思明,吴永,等. 滚石防护棚洞EPS垫层结构缓冲作用研究[J]. 振动与冲击,2014, 33(4): 199-214.
WANG Dong-po, HE Si-ming, WU Yong, et al. Cushioning effect of rock sheds with EPS cushion on rock-falls action[J]. Journal of Vibration and Shock, 2014, 33(4): 199-214.
[10] GUO Yan-feng, JI Mei-juan, FU Yun-gang, et al. Cushioning energy absorption of composite layered structures including paper corrugation, paper honeycomb and expandable polyethylene[J]. The Journal of Strain Analysis for Engineering Design, 2019, 3(54): 176-191.
[11] 黎良仆,袁松,谢凌志,等. 落石冲击荷载作用下EPE垫层棚洞缓冲作用研究[J]. 四川建筑科学研究, 2016(3): 46-49.
LI Liang-pu, YUAN Song, XIE Ling-zhi, et al. Study on the cushioning properties of shed with EPE cushion under rock-fall load[J]. Sichuan Building Science, 2016(3): 46-49.
[12] ZHAO Peng, YUAN Song; LI Liang-pu, et al. Experimental study on the multi-impact resistance of a composite cushion composed of sand and geofoam[J]. Geotextiles and Geomembranes, 2020, 49(1): 45-56
[13] ZHAO Peng, XIE Ling-zhi, LI Liang-pu, et al. Large-scale rockfall impact experiments on a RC rock-shed with a newly proposed cushion layer composed of sand and EPE[J]. Engineering Structures, 2018, 175: 386-398.
[14] 姚玉强. 浅谈汶马高速公路桥梁综合安全措施[J]. 四川建筑, 2014, 34(3): 182-184.
YAO Yu-qiang. Discussion on comprehensive safety measures of bridges on Wenma Expressway[J] Sichuan Architecture, 2014,34(3): 182-184.
[15] 裴向军,刘洋,王东坡. 滚石冲击棚洞砂土垫层耗能缓冲机理研究[J]. 四川大学学报(工程科学版), 2016, 48(1): 15-22.
PEI Xiang-jun, LIU Yang, WANG Dong-po. Study on the energy dissipation of sandy soil cushions on the rock-shed under rockfall impact load[J]. Journal of Sichuan University: Engineering Science Edition, 2016, 48(1): 15-22.
[16] 王中强,余志武. 基于能量损失的混凝土损伤模型[J]. 建筑材料学报, 2004, 7(4): 365-369.
WANG Zhong-qiang, YU Zhi-wu. Concrete Damage Model Based on Energy Loss[J]. Journal of Building Materials, 2004, 7(4): 365-369.
[17] 袁博,祝介旺. 滚石冲击下棚洞破坏动力响应分析及改进对策——以川藏公路(安久拉山南麓)门式棚洞为例[J].水文地质工程地质, 2019,46(6): 57-66.
[18] YUAN Bo, ZHU Jie-wang. Dynamic response analyses and improvement countermeasures of shed-tunnel destruction under rockfall impact: a case study of the shed-tunnel in the southern foot of the Anjiula Mountain on the Sichuan-Tibet[J]. Highway Hydrogeology and Engineering Geology, 2019,46(6): 57-66.
[19] 余志祥,许浒,吕蕾,等. 落石冲击对山区桥梁墩柱破坏的影响[J]. 四川大学学报(工程科学版), 2012(6): 86-91.
YU Zhi-xiang, XU Hu, LU Lei, et al. Influence on Damage of Bridge Pier in Mountain Area Under Impact Load of Rockfall[J]. Journal of Sichuan University: Engineering Science Edition, 2012(6): 86-91.

PDF(4154 KB)

283

Accesses

0

Citation

Detail

段落导航
相关文章

/