应用配筋砂浆带等加固技术对一缩尺比例为1/4的独立式石箍窑洞震损模型进行加固,并对其进行模拟地震振动台试验,以研究独立式石箍窑洞加固模型的动力响应与抗震性能。通过白噪声扫频得到该模型各阶段的自振频率和阻尼比等动力特性,并研究了模型结构的破坏特征、动力响应及其滞回耗能。试验研究结果表明:随着输入地震动峰值加速度的增加,模型结构的自振频率和刚度下降,阻尼比增大,加速度放大系数呈下降趋势;在水平X向(面阔方向)地震作用下,窑脸侧拱顶的加速度响应大于背墙侧拱顶,中孔拱顶的加速度响应大于边孔拱顶的,中拱拱脚的相对位移值始终大于边拱拱脚,甚至大于边拱拱顶;在峰值加速度为1.00 g的地震激励后,结构顶部、拱顶和拱脚的X向最大侧移角分别达到了1/29、1/229和1/201。模型虽局部破坏明显,但仍未出现整体倒塌趋势,表明本文提出的方法对独立式石箍窑洞的加固效果显著。
关键词:独立式石箍窑洞;震损模型;加固;振动台试验;地震响应
Abstract
A reinforced mortar belt and other reinforcement technologies were used to strengthen a 1/4 scaled free-standing stone cave dwelling earthquake damage model, and a earthquake simulation shaking table test was performed to study the dynamic responses and seismic performances of the reinforced model. The dynamic characteristics such as natural frequency and damping ratio were obtained by sweeping the white noise. The damage characteristics of the model structure and the dynamic responses such as acceleration and displacement were studied. The experimental research results show that the natural frequency and stiffness of the model structure decrease, the damping ratio increases, and the acceleration amplification factor generally decreases as the peak acceleration of the input seismic wave increases. Under X-direction horizontal earthquake, the acceleration response of the vault on the side of the kiln face is larger than the back wall side vault, and the acceleration response of the middle hole vault is greater than that of the side hole vault. The relative displacement value of the middle cave leg was always higher than that of the side cave leg, and even greater than the top of the side arch. After the earthquake excitation with a peak acceleration of 1.00 g, the maximum shift angles of the top, dome and arch foot of the structure in X direction reached 1/29, 1/229 and 1/201, respectively. Although the local damage of the model was obvious, the overall collapse trend did not appear, indicating that the method proposed in this paper has a significant effect on the reinforcement of the free-standing stone cave dwelling.
Keywords: free-standing stone cave dwelling; damaged model;
关键词
独立式石箍窑洞 /
震损模型 /
加固 /
振动台试验 /
地震响应
{{custom_keyword}} /
Key words
free-standing stone cave dwelling /
damaged model;
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 虞春隆, 朱颖彬, 赵安启. 黄土高原传统民居因地制宜的人文理念探析[J]. 建筑与文化, 2018, 15(10): 108-109. (YU Chunlong, ZHU Yingbin, ZHAO Anqi. Research on the humanism ideas of adapting to surrounding conditions of the traditional folk house in the loess plateau[J]. Architecture & Culture, 2018, 15(10): 108-109. (in Chinese))
[2] Liu Jiaping, Zhu Xinrong, Yang Liu, et al. Exemplary project of green cave dwellings in Loess Plateau[J]. Frontiers of Energy and Power Engineering in China, 2010, 4(1): 122-130.
[3] 谷红文, 张风亮, 杨焜, 等. 西北地区黄土窑洞的生存现状和保护策略[J]. 工业建筑, 2019, 49(01): 1-5+20. (GU Hongwen, ZHANG Fengliang, YANG Kun, et al. The survival status and protection strategy analysis of the typical traditional loess caves dwellings in the northwest[J]. Industrial Construction, 2019, 49(01): 1-5+20. (in Chinese))
[4] PENG Jianbing, SUN Ping, Igwe Ogbonnaya, et al. Loess caves, a special kind of geo-hazard on loess plateau, northwestern China[J]. Engineering Geology, 2018, 236: 79-88.
[5] 王飞剑, 刘如山, 马朝晖. 窑洞外形特征对结构抗震性能影响研究[J]. 地震工程学报, 2018, 40(05): 910-918. (WANG Feijian, LIU Rushan, MA Zhaohui. Effect of cave dwelling shape on the seismic performance of structures[J]. China Earthquake Engineering Journal, 2018, 40(05): 910-918. (in Chinese))
[6] 刘钊, 张风亮, 薛建阳, 等. 西北地区传统民居砖箍窑洞地震响应分析[J]. 工业建筑, 2019, 49(01): 43-48+106. (LIU Zhao, ZHANG Fengliang, XUE Jianyang, et al. Seismic response analysis of brick cave dwelling in northwest China[J]. Industrial Construction, 2019, 49(01): 43-48+106. (in Chinese))
[7] 胡晓锋, 张风亮, 薛建阳, 等. 黄土窑洞病害分析及加固技术[J]. 工业建筑, 2019, 49(01): 6-13. (HU Xiaofeng, ZHANG Fengliang, XUE Jianyang, et al. Disease analysis and reinforcement measures of loess caves[J]. Industrial Construction, 2019, 49(01): 6-13. (in Chinese))
[8] 张敏政. 地震模拟实验中相似律应用的若干问题[J]. 地震工程与工程振动, 1997, 17(02): 52-58. (ZHANG Minzheng. Study on similitude laws for shaking table tests[J]. Earthquake Engineering and Engineering Dynamics, 1997, 17(02): 52-58. (in Chinese))
[9] 潘文彬. 独立式石箍窑洞地震模拟振动台试验及有限元分析[D]. 西安: 西安建筑科技大学, 2020. (Pan Wenbin, Shaking table test and finite element analysis of seismic simulation of free-standing stone cave dwelling[D]. Xi’an: Xi’an University of Architecture and Technology, 2020. (in Chinese))
[10] 薛建阳, 许丹, 任国旗, 等. 穿斗式木结构民居模拟地震振动台试验研究[J]. 建筑结构学报, 2019, 40(04): 123-132. (XUE Jianyang, XU Dan, REN Guoqi, et al. Earthquake simulation shaking table test of column-and-tie wooden structure dwellings[J]. Journal of Building Structures, 2019, 40(04): 123-132. (in Chinese))
[11] 钱春宇, 徐敦峰, 浩文明, 等. 西安小雁塔结构模型振动台试验研究[J]. 振动与冲击, 2020, 39(22): 67-75. (QIAN Chunyu, XU Dunfeng, HAO Wenming, et al. Shaking table test on a model of Xi’an Xiaoyan pagoda[J]. Journal of Vibration and Shock, 2020, 39(22): 67-75. (in Chinese))
[12] 毛建猛, 谢礼立. 基于MPA方法的结构滞回耗能计算[J]. 地震工程与工程振动, 2008, 28(06): 33-38. (MAO Jianmeng, XIE Lili. Computation of structural hysteretic energy based on MPA procedure[J]. Earthquake Engineering and Engineering Dynamics, 2008, 28(06): 33-38. (in Chinese))
[13] ZHAO Xiangbi, Zhang Fengliang, XUE Jianyang, et al. Shaking table tests on seismic behavior of ancient timber structure reinforced with CFRP sheet[J]. Engineering Structures, 2019, 197: 109405.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}