基于FAST v7开发地震分析和土-结相互作用(Soil Structure Interaction,SSI)模块,形成气动-水动-地震-伺服-土结耦合仿真平台FAST-S,并采用Seismic和ABAQUS验证地震分析模块的计算精度和可靠性。通过扩展的FAST-S平台,建立考虑SSI效应的5MW近海单桩风机模型,分析风、波浪和地震之间的耦合效应以及研究近场地震动速度脉冲对停机和运行状态下风机支撑结构动力响应的影响。结果表明:地震加剧了塔顶振动,风浪荷载对减轻地震诱发的塔顶振动有一定作用;气动载荷、水动载荷和地震载荷之间存在非线性耦合关系,计算时应充分考虑风-浪-地震耦合效应;近场地震速度脉冲会增大停机和运行状态下风机的塔顶位移、塔顶加速度和泥线处弯矩,结构设计时应注意脉冲型地震动对结构产生的不利影响,特别是停机状态下风机的结构安全。
关键词:近海风机;地震分析模块;土-结相互作用;近场地震动;结构动力响应
Abstract
The seismic analysis and soil structure interaction module is developed based on FAST v7, forming an aero-hydro-seismic-servo-soil structure coupled simulation software FAST-S, and the calculation accuracy and reliability of the seismic analysis module is verified by Seismic and ABAQUS. Based on the extended software FAST-S, a 5MW monopile offshore wind turbine model considering SSI effect is established to analyze the coupling effect among wind, wave and earthquake, and to study the influence of the near-field ground motion velocity pulse on the dynamic response of the wind turbine support structure under parked and operational states. The results show that the earthquake intensifies the tower top vibration, and the wind-wave load plays a certain role in reducing the tower top vibration induced by the earthquake. There is a nonlinear coupling relationship among aerodynamic, hydrodynamic and seismic loadings, and the wind-wave-earthquake coupling effect should be fully considered in the calculation. Near-field ground motion velocity pulse will increase the tower top displacement, tower top acceleration and bending moment at the mudline of the wind turbine under parked and operational states. In the structure design, attention should be paid to the adverse effects of pulse-type ground motions on the structure, especially the structural safety of the wind turbine under the parked state.
Key words: offshore wind turbine; seismic analysis module; soil structure interaction; near-filed ground motion; structural dynamic response
关键词
近海风机 /
地震分析模块 /
土-结相互作用 /
近场地震动 /
结构动力响应
{{custom_keyword}} /
Key words
offshore wind turbine /
seismic analysis module /
soil structure interaction /
near-filed ground motion /
structural dynamic response
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Global Wind Energy Council. Global Offshore Wind Report 2020; Technical Report; Global Wind Energy Council: Brussels, Belgium, 2020.
[2] Bazeos N, Hatzigeorgiou G D, Hondros I D, et al. Static, seismic and stability analyses of a prototype wind turbine steel tower [J]. Engineering structures, 2002, 24(8): 1015-1025.
[3] Lavassas I, Nikolaidis G, Zervas P, et al. Analysis and design of the prototype of a steel 1-MW wind turbine tower [J]. Engineering structures, 2003, 25(8): 1097-1106.
[4] 戴靠山,赵志,毛振西. 风力发电塔筒极端动力荷载作用下破坏的对比研究[J]. 振动与冲击,2019, 38(15): 252-257.
Dai Kao-shan, Zhao Zhi, Mao Zhen-xi. Failure of a wind turbine tower under extreme dynamic loads [J]. Journal of Vibration and Shock, 2019, 38(15): 252-257.
[5] 贺广零. 考虑土-结构相互作用的风力发电高塔系统地震动力响应分析[J]. 机械工程学报,2009, 45(7): 87-94.
He Guang-ling. Seismic response analysis of wind turbine tower systems considering soil-structure interaction [J]. Journal of Mechanical Engineering, 2009, 45(7): 87-94.
[6] 贺广零,周勇,李杰. 风力发电高塔系统地震动力响应分析[J]. 工程力学,2009,26(7): 72-77.
He Guang-ling, Zhou Yong, Li Jie. Seismic analysis of wind turbine system [J]. Engineering Mechanics, 2009, 26(7): 72-77.
[7] 杨阳,李春,袁全勇,等. 地震作用下风力机时频域动态响应特性分析[J]. 振动与冲击,2017, 36(18): 245-251.
Yang Yang, Li Chun, Yuan Quan-yong, et al. Analysis of dynamic response characteristics in time-frequency domain of wind turbine on earthquake loading [J]. Journal of Vibration and Shock, 2017, 36(18): 245-251.
[8] Wolf J P. Spring-dashpot-mass models for foundation vibrations [J]. Earthquake engineering & structural dynamics, 1997, 26(9): 931-949.
[9] 李颖,王文华,李昕. 地震作用下固定式海上风力机耦合反应分析[J]. 太阳能学报,2019, 40(9): 2502-2508.
Li Ying, Wang Wen-hua, Li Xin. Coupled analysis of fixed bottom offshore wind turbine under seismic loads [J]. Acta Energiae Solaris Sinica, 2019, 40(9): 2502-2508.
[10] 王文华,李昕,李颖,等. 地震荷载作用下海上风力机结构动力模型实验[J]. 太阳能学报,2018, 39(7): 2018-2026.
Wang Wen-hua, Li Xin, Li Ying, et al. Dynamic model test and numerical analysis of an offshore wind turbine under seismic loads [J]. Acta Energiae Solaris Sinica, 2018, 39(7): 2018-2026.
[11] 席仁强,许成顺,杜修力,等. 风-波浪荷载对海上风机地震响应的影响[J]. 工程力学,2020, 37(11): 58-68.
Xi Ren-qiang, Xu Cheng-shun, Du Xiu-li, et al. Effects of wind-wave loadings on the seismic response of offshore wind turbines [J]. Engineering Mechanics, 2020, 37(11): 58-68.
[12] Xu Y, Ren Q, Zhang H, et al. Collapse analysis of a wind turbine tower with initial-imperfection subjected to near-field ground motions [C]//Structures. Elsevier, 2021, 29: 373-382.
[13] 徐亚洲,田晓航,张慧,等. 近断层地震动作用下风机塔地震反应分析[J]. 地震工程与工程振动,2020, 40(1): 57-66.
Xu Ya-zhou, Tian Xiao-hang, Zhang Hui, et al. Seismic response analysis of wind turbines subjected to near-fault ground motions [J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(1): 57-66.
[14] Ren Q, Xu Y, Zhang H, et al. Shaking table test on seismic responses of a wind turbine tower subjected to pulse-type near-field ground motions [J]. Soil Dynamics and Earthquake Engineering, 2021 142: 106557.
[15] Jonkman J M, Buhl Jr M L. Fast user's guide-updated august 2005 [R]. National Renewable Energy Lab. (NREL), Golden, CO (United States), 2005.
[16] Asareh M, Prowell I. Seismic loading for FAST [J]. Contract, 2011, 303(275): e3000.
[17] Jonkman J, Butterfield S, Musial W, et al. Definition of a 5-MW reference wind turbine for offshore system development [R]. National Renewable Energy Lab. (NREL), Golden, CO (United States), 2009.
[18] Jonkman J, Musial W. Offshore code comparison collaboration (OC3) for IEA Wind Task 23 offshore wind technology and deployment [R]. National Renewable Energy Lab. (NREL), Golden, CO (United States), 2010.
[19] Passon P. Memorandum: derivation and description of the soil-pile-interaction models[R]. Leuven: IEA-Annex XXIIII Subtask 2, 2006.
[20] Bir G. User's Guide to BModes (Software for Computing Rotating Beam-Coupled Modes) [R]. National Renewable Energy Lab. (NREL), Golden, CO (United States), 2005.
[21] Yang Y, Li C, Bashir M, et al. Investigation on the sensitivity of flexible foundation models of an offshore wind turbine under earthquake loadings [J]. Engineering Structures, 2019, 183: 756-769.
[22] PEER. PEER ground motion Database, pacific earthquake engineering research centre. Berkeley, CA: University of California; 2012.
[23] Jonkman B J. TurbSim user's guide: Version 1.50 [R]. National Renewable Energy Lab. (NREL), Golden, CO (United States), 2009.
[24] International Electrotechnical Commission. Wind Turbines Part 3: Design requirements for offshore wind turbines: IEC 61400-3 [S].Geneva, Switzerland: IEC, 2009.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}