当多跨结构受到横向载荷产生振动时,支承与基座衔接处往往产生较大的支反力。针对该问题,以双支承的梁系统为例,基于压电换能原理,采用柱状压电陶瓷支承作为减振元件,并对其减振效果进行了理论分析。利用Hamilton原理推导了压电机电耦合边界条件下该系统的振动微分方程。结合有限元法和偏微分方程数值计算方法,对不同种类压电材料的机电耦合系统进行了模态分析和动力学响应计算。计算结果表明压电陶瓷支承可以有效抑制多跨结构中支承传递到基座的振动和支反力。
关键词:压电陶瓷;有限元分析;动力响应;模态分析
Abstract
When the multi span structure vibrates under the transverse load, there is often a large support reaction force at the connection between the support and the base. To solve this problem, taking the double supported beam system as an example, based on the principle of piezoelectric energy exchange, the cylindrical piezoelectric ceramic support is used as the damping element, and its damping effect is analyzed theoretically. Based on Hamilton principle, the vibration differential equation of the system under piezoelectric electromechanical coupling boundary conditions is derived. Combined with the finite element method and partial differential equation numerical calculation method, the modal analysis and dynamic response calculation of electromechanical coupling systems with different kinds of piezoelectric materials are carried out. The results show that the piezoelectric ceramic support can effectively suppress the vibration and support reaction transmitted from the support to the base in multi span structures.
Key words: piezoelectric ceramics; finite element analysis; dynamic response; modal analysis
关键词
压电陶瓷 /
有限元分析 /
动力响应 /
模态分析
{{custom_keyword}} /
Key words
piezoelectric ceramics /
finite element analysis /
dynamic response /
modal analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Forward R L. Electronic damping of vibrations in optical structures [J]. Applied Optics, 1979, 18(5):690-697.
[2] Kerboua M, Megnounif A, Benguediab M, et al. Vibration control beam using piezoelectric-based smart materials [J]. Composite Structures, 2015, 123(may):430-442.
[3] 陈圣兵,吴东升,王锋,等. 超声速气流中壁板颤振分析及负电容分流控制[J]. 振动与冲击, 2020, 39(22): 30-34+56.
CHEN Sheng-bing, WU Dong-sheng, WANG Feng, et al. Analysis and control of panel flutter in supersonic flow by attaching negative capacitance shunts [J]. Journal of vibration and shock, 2020, 39(22): 30-34+56.
[4] Davis C L, Lesieutre G A. An Actively Tuned Solid-State Vibration Absorber Using Capacitive Shunting of Piezoelectric Stiffness [J]. Journal of Sound and Vibration, 2000, 232(3):601-617.
[5] 柳维玮,柳维玮. 压电分流阻尼电路设计的极点配置方法[J]. 压电与声光, 2018, 040(001):144-148.
LIU Wei-wei, MAO Qi-bo. Pole Placement Method for Piezoelectric Shunt Damping Circuit Design [J]. Piezoelectrics & Acoustooptics, 2018, 040(001):144-148.
[6]李明明,黄春蓉,方勃,等. 主被动混合压电网络悬臂梁结构的建模与比较[J]. 振动与冲击, 2017, 36(03): 98-104+118.
LI Ming-ming, HUANG Chun-rong, FANG Bo, et al. Modelling and comparison of cantilever beams withan active-passive hybrid piezoelectric network [J]. Journal of vibration and shock, 2017, 36(03): 98-104+118.
[7] 刘记心,吴登峰,杜敬涛,等. 压电堆式JG型复合隔振器结构设计与实验研究[J]. 噪声与振动控制, 2019, 039(002):210-214.
LIU Ji-xin, WU Deng-feng, DU Jing-tao ,et al. Structural Design and Experimental Research of JG Hybrid Isolators using Piezostacks [J]. Noise and Vibration Control, 2019, 039(002):210-214.
[8] 李以农,张锋,丁庆中,等. 齿轮啮合振动的主动控制方法与实验研究[J]. 振动工程学报, 2014, 27(02): 215-221.
LI Yi-nong, ZHANG feng, DING Qing-zhong ,et al. Method and Experiment Study for Active Vibration Control Gear Meshing [J]. Journal of Vibration Engineering, 2014, 27(02): 215-221.
[9] Koszewnik A. Active Vibration Control Method for Space Mechanical Structure with Piezostacks [J]. Solid State Phenomena, 2013, 198: 433-438.
[10] He Huan, Tan Xing, He Jin-cheng, et al. A novel ring-shaped vibration damper based on piezoelectric shunt damping: Theoretical analysis and experiments [J]. Journal of Sound and Vibration, 2019, 468:115125.
[11] HAGOOD N W, FLOTOW A V. Damping of Structural Vibrations with Piezoelectric Materials and Passive Electrical Networks[J]. Journal of Sound and Vibration, 1991, 146(2): 243-268.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}