基于高斯过程回归的桥梁多变量地震易损性分析

闫业祥1,孙利民1,2,3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (23) : 27-35.

PDF(2944 KB)
PDF(2944 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (23) : 27-35.
论文

基于高斯过程回归的桥梁多变量地震易损性分析

  • 闫业祥1,孙利民1,2,3
作者信息 +

Multivariate seismic vulnerability analysis of bridges based on Gaussian process regression

  • YAN Yexiang1, SUN Limin1,2,3
Author information +
文章历史 +

摘要

本文建立了一种基于高斯过程回归的多变量地震易损性分析方法,可以将易损性表达为由地震动强度指标和结构参数组成的矢量输入的多元函数,并以此为基础发展了均值易损性曲线与包络易损性曲线,能够定量分析所有不确定参数对易损性的影响。以一座三跨钢筋混凝土连续箱梁桥为例进行了分析与验证,结果表明所提出的方法能够以数百次的动力分析达到与蒙特卡罗法(数十万次动力分析)相一致的精度;并识别了不同的地震强度指标对易损性的影响,发现任何单一的参数均会造成易损性的不精确(离散)呈现;对于本文算例,结果显示平均谱加速度是一个用来生成最小离散度的均值与包络易损性曲线的最优指标。
关键词:多变量地震易损性分析;均值易损性曲线;包络易损性曲线;高斯过程回归;钢筋混凝土连续梁桥

Abstract

This paper establishes a multivariate seismic fragility analysis method based on Gaussian process regression, which presents fragility as a multivariate function of vector-valued input composed of ground motion intensity indicators and structural parameters. Based on this, the mean fragility curve and envelope fragility curve are developed, quantitatively analyzing the impact of all uncertain parameters on fragility. A three-span reinforced concrete continuous box girder bridge is used as an example to analyze and verify. The results show that the proposed method is comparatively satisfactory in accuracy compared with the Monte Carlo simulation (by hundreds of thousands of dynamic analyses) with hundreds of dynamic analyses. The impact of different seismic intensity indicators on fragility is identified, and the fact is found that any single parameter will cause inaccurate and discrete presentation of fragility. For the case in this paper, the average spectral acceleration is an optimal index to generate the mean and envelope fragility curve with the minimum dispersion.
Key words: multivariate seismic fragility analysis; mean fragility curve; envelope fragility curve; Gaussian process regression; reinforced concrete continuous girder bridge.

关键词

多变量地震易损性分析 / 均值易损性曲线 / 包络易损性曲线 / 高斯过程回归 / 钢筋混凝土连续梁桥

Key words

 multivariate seismic fragility analysis / mean fragility curve / envelope fragility curve / Gaussian process regression / reinforced concrete continuous girder bridge.

引用本文

导出引用
闫业祥1,孙利民1,2,3. 基于高斯过程回归的桥梁多变量地震易损性分析[J]. 振动与冲击, 2022, 41(23): 27-35
YAN Yexiang1, SUN Limin1,2,3. Multivariate seismic vulnerability analysis of bridges based on Gaussian process regression[J]. Journal of Vibration and Shock, 2022, 41(23): 27-35

参考文献

[1] 吕大刚,刘洋,于晓辉.第二代基于性能地震工程中的地震易损性模型及正逆概率风险分析[J].工程力学, 2019,36(09):1-11+24.
LÜ Da-gang , LIU Yang, YU Xiao-hui. Seismic fragility models and forward-backward probabilistic risk analysis in second-generation  performance-based earthquake engineering [J]. Engineering mechanics, 2019,36(09):1-11+24.
[2] Yan Ye-xiang, Xia Ye, Yang Ji-peng, et al. Optimal selection of scalar and vector-valued seismic intensity measures based on Gaussian Process Regression [J]. Soil Dynamics and Earthquake Engineering, 2022, 152: 106961.
[3] 宋帅,王帅,吴刚,徐佰顺.中小跨径梁桥地震易损性研究[J].振动与冲击,2020,39(09):118-125.
SONG Shuai,WANG Shuai, WU Gang. Seismic vulnerability analysis of small and medium span girder bridges [J]. Journal of vibration and shock,2020,39(09):118-125.
[4] Ghosh J, Padgett J E, Dueñas-Osorio L. Surrogate modeling and failure surface visualization for efficient seismic vulnerability assessment of highway bridges [J]. Probabilistic Engineering Mechanics, 2013,34, 189-199.
[5] Mangalathu S, Heo G, Jeon J S. Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes [J]. Engineering Structures,2018, 162, 166-176.
[6] Jeon J S, Mangalathu S, Song J, et al. Parameterized seismic fragility curves for curved multi-frame concrete box-girder bridges using Bayesian parameter estimation [J]. Journal of Earthquake Engineering, 2019, 23(6), 954-979.
[7] Gentile R, Galasso C. Gaussian process regression for seismic fragility assessment of building portfolios [J]. Structural Safety, 2020,87, 101980.
[8] Zhong J, Wan H P, Yuan W, et al. Risk-informed sensitivity analysis and optimization of seismic mitigation strategy using Gaussian process surrogate model [J]. Soil Dynamics and Earthquake Engineering,2020, 138, 106284.
[9] Pang Y, Zhou X, He W, et al. Uniform design–based Gaussian process regression for data-driven rapid fragility assessment of bridges [J]. Journal of Structural Engineering,2021,147(4), 04021008.
[10] 何志昆,刘光斌,赵曦晶,王明昊.高斯过程回归方法综述[J].控制与决策,2013,28(08):1121-1129+1137.
HE Zhi-kun, LIU Guang-bin, ZHAO Xi-jing, et al. Overview of Gaussian process regression [J]. Control and Decision, 2013,28(08):1121-1129+1137.
[11] 宋帅,钱永久,吴刚. 基于多元Copula函数的桥梁体系地震易损性分析方法研究[J].振动与冲击,2017,36(09):122-129+208.
SONG Shuai,QIAN Yongjiu,WU Gang. Seismic fragility analysis of a bridge system based on multivariate Copula function [J]. Journal of vibration and shock, 2017,36(09):122-129+208.
[12] Nielson, B G, DesRoches R. Seismic fragility methodology for highway bridges using a component level approach. Earthquake Engineering & Structural Dynamics, 2007, 36(6), 823-839.
[13] 吴文朋. 考虑不确定性的钢筋混凝土桥梁地震易损性研究[D].湖南大学,2016.
WU Wen-peng. Seismic fragility of reinforced concrete bridges with consideration of various sources of uncertainty [D]. Hunan University,2016.
[14] Cao S, Jiang L, Wei B. Numerical and experimental investigations on the Park-Ang damage index for high-speed railway bridge piers with flexure failures [J]. Engineering Structures, 2019, 201, 109851.
[15] FEMA P695. Quantification of building seismic performance factors [R]. Federal Emergency Management Agency, Washington, D.C., 2009.

PDF(2944 KB)

370

Accesses

0

Citation

Detail

段落导航
相关文章

/