[1] PAPAEFTHYMIOU S, TZEVELEKOU T, ANTONOPOULOS A, et al. Typical defects in plate and long steel products[J]. International Journal of Structural Integrity, 2016,7(5): 645-655.
[2] 沈跃, 翟新玲. 钢板孔洞涡流检测信号的频谱分析研究[J]. 无损探伤, 2005(04): 16-18.
Shen Yue, Zhai Xinling. Study on frequency spectrum analysis of eddy current detection signal of steel plate hole[J]. Nondestructive Testing, 2005(04): 16-18.(in Chinese)
[3] 沈跃, 黄延军, 魏淑贤, 等. 小波分析用于钢板孔洞的涡流检测研究[J]. 石油大学学报(自然科学版), 2005,29(6): 127-130, 150.
Shen Yue, Huang Yanjun, Wei Shuxian, et al. Wavelet analysis for eddy current detection of steel plate holes[J]. Journal of the University of Petroleum (Edition of Natural Science), 2005,29(6): 127-130, 150.(in Chinese)
[4] 常轶民, 金永, 吴靖. 基于光栅投影的钢板孔洞缺陷测量[J]. 光电子激光, 2019,30(10): 1062-1067.
Chang Yimin, Jin Yong, Wu Jing. Steel plate hole defect measurement based on grating projection[J]. Optoelectronics•Laser, 2019,30(10): 1062-1067.(in Chinese)
[5] 汤勃, 戴超凡, 黄文豪. 基于卷积神经网络带标记的钢板表面缺陷检测[J]. 制造业自动化, 2020,42(9): 34-40.
Tang Bo, Dai Chaofan, Huang Wenhao. Marked steel plate surface defect detection based on convolutional neural network[J]. Manufacturing Automation, 2020, 42(9): 34-40.(in Chinese)
[6] WYSOCKA-FOTEK O, MAJ M, OLIFERUK W. Use Of Pulsed IR Thermography For Determination Of Size And Depth Of Subsurface Defect Taking Into Account The Shape Of Its Cross-Section Area[J]. Archives of Metallurgy and Materials, 2015,60(2): 615-620.
[7] ABDULKAREEM M, BAKHARY N, VAFAEI M, et al. Application of two-dimensional wavelet transform to detect damage in steel plate structures[J]. Measurement, 2019,146: 912-923.
[8] CHEN D, MONTANO V, HUO L, et al. Detection of subsurface voids in concrete-filled steel tubular (CFST) structure using percussion approach[J]. Construction and Building Materials, 2020,262: 119761.
[9] 刘蒙. 基于麦克风冲击共振法的钢—混凝土组合结构脱空损伤诊断研究[D]. 长沙: 湖南大学, 2018.
[10] 周云, 裴熠麟, 刘蒙. 基于非接触式麦克风冲击共振测试的钢-混组合结构界面脱空损伤识别方法研究[J]. 地震工程与工程振动, 2020,40(01): 67-79.
Zhou Yun, Pei Yilin, Liu Meng. Research on interface void damage identification method of steel-concrete composite structure based on impact resonance test of non-contact microphone[J]. Journal of Earthquake Engineering and Engineering Vibration, 2020,40(01): 67 -79.
[11] YUAN R, LV Y, KONG Q, et al. Percussion-based bolt looseness monitoring using intrinsic multiscale entropy analysis and BP neural network[J]. Smart materials and structures, 2019,28(12): 125001.
[12] WANG F, HO S C M, SONG G. Modeling and analysis of an impact-acoustic method for bolt looseness identification[J]. Mechanical Systems and Signal Processing, 2019,133: 106249.
[13] WANG F, SONG G. Looseness detection in cup-lock scaffolds using percussion-based method[J]. Automation in Construction, 2020,118: 103266.
[14] ZHENG L, CHENG H, HUO L, et al. Monitor concrete moisture level using percussion and machine learning[J]. Construction and Building Materials, 2019,229: 117077.
[15] GUTHRIE W S, LARSEN J L, BAXTER J S, et al. Automated Air-Coupled Impact-Echo Testing of a Concrete Bridge Deck from a Continuously Moving Platform[J]. Journal of Nondestructive Evaluation, 2019,38(1).
[16] COHEN J I, GORDON-SALANT S. The effect of visual distraction on auditory-visual speech perception by younger and older listeners[J]. The Journal of the Acoustical Society of America, 2017,141(5): L470-L476.
[17] CALADCAD J A, CABAHUG S, CATAMCO M R, et al. Determining Philippine coconut maturity level using machine learning algorithms based on acoustic signal[J]. Computers and electronics in agriculture, 2020,172: 105327.
[18] ZHANG Y, DENG X, XU Z, et al. Watermelon Ripeness Detection via Extreme Learning Machine with Kernel Principal Component Analysis Based on Acoustic Signals[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2019,33(8): 1951001-1951002.
[19] TONG F, TSO S K, XU X M. Tile-wall bonding integrity inspection based on time-domain features of impact acoustics[J]. Sensors and Actuators A: Physical, 2006,132(2): 557-566.
[20] TONG F, XU X M, LUK B L, et al. Evaluation of tile–wall bonding integrity based on impact acoustics and support vector machine[J]. Sensors and Actuators A: Physical, 2008,144(1): 97-104.
[21] XING T, BAI Y, FANG Y. Study on detecting lumber damage using acoustic radiation[J]. Procedia Engineering, 2010,7: 410-415.
[22] 唐伟. 声学缺陷检测中关键技术的研究[D]. 天津: 天津大学, 2018.
[23] 丁幼亮, 李爱群, 缪长青. 基于小波包能量谱的结构损伤预警方法研究[J]. 工程力学, 2006,23(8): 42-48.
Ding Youliang, Li Aiqun, Miao Changqing. Research on structural damage warning method based on wavelet packet energy spectrum[J]. Engineering Mechanics, 2006,23(8): 42-48.(in Chinese)
[24] 葛继平, 李胡生. 基于小波包能量累积变异的梁桥损伤识别试验[J]. 振动.测试与诊断, 2011,31(01): 85-88.
Ge Jiping, Li Husheng. Beam bridge damage identification test based on wavelet packet energy accumulation variation[J]. Journal of Vibration, Measurement & Diagnosis, 2011, 31(01): 85-88.(in Chinese)
[25] 刘习军,商开然,张素侠,等.基于改进小波包能量的梁式结构损伤识别[J].振动与冲击,2016,35(13):179-185+200.
Liu Xijun, Shang Kairan, Zhang Suxia, et al. Damage detection method for beam structures based on improved Wavelet Packet energy[J].Journal of Vibration and Shock,2016,35(13):179-185+200.(in Chinese)
[26] 蒋佳炜,胡以怀,柯赟,陈彦臻.基于小波包特征提取和模糊熵特征选择的柴油机故障分析[J].振动与冲击,2020,39(04):273-277+298.
Jiang Jiawei, Hu Yihuai, Ke Yun, et al. Fault diagnosis of diesel engines based on wavelet packet energy spectrum feature extraction and fuzzy entropy feature selection[J]. Journal of Vibration and Shock,2020,39(04):273-277+298.(in Chinese)
[27] 张涛, 高新意, 唐伟, 等. 基于神经网络的玻璃缺陷声学检测方法[J]. 声学技术, 2018,37(05): 488-495.
Zhang Tao, Gao Xinyi, Tang Wei, et al. Acoustic detection method for glass defects based on neural network[J]. Technical Acoustics, 2018,37(05): 488-495.(in Chinese)
[28] 杜功焕, 朱哲民, 龚秀芬. 声学基础[M]. 第3版. 南京: 南京大学出版社, 2012: 107-123.
[29] 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003: 13-93.
[30] 何琳, 朱海潮, 邱小军, 等. 声学理论与工程应用[M]. 北京: 科学出版社, 2006: 230-231.