嵌入双层阻尼薄膜共固化复合材料带筋结构的自由振动

王绍清1,郑长升2,梁森3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (23) : 293-299.

PDF(1774 KB)
PDF(1774 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (23) : 293-299.
论文

嵌入双层阻尼薄膜共固化复合材料带筋结构的自由振动

  • 王绍清1,郑长升2 ,梁森3
作者信息 +

Free vibration of co-cured composite stiffened structure embedded with double-layer damping films

  • WANG Shaoqing1, ZHENG Changsheng3, LIANG Sen2
Author information +
文章历史 +

摘要

为探究嵌入双层阻尼薄膜共固化复合材料带筋结构的振动特性,根据一阶剪切变形理论建立了该结构的动力学解析模型,将复模量理论和复合材料力学理论相结合,推导了其复数形式的控制方程,采用纳维法得到了满足位移边界条件的理论解,将理论解同有限元结果进行对比,验证了该模型的有效性。进一步利用已验证理论模型分析了结构的几何和材料参数对其动力学特性的影响。结果表明:结构固有频率随着筋条高度和宽度的增大而增大;随着筋条高度和宽度的增加,结构损耗因子随之减小;当两阻尼层剪切模量之比较大时,结构的固有频率和损耗因子对其剪切模量之比的变化不再敏感。
关键词:粘弹性材料;共固化;固有频率;损耗因子;带筋结构

Abstract

In order to obtain the vibration characteristics of co-cured and stiffened composite structure with double-layer damping membranes embedded, a dynamic analytical model of co-cured and stiffened composite structure with double-layer damping membranes embedded was established on the basis of first-order shear deformation theory. The complex vibration equations are derived by combination of complex modulus theory with composite material mechanics theory. The theoretical solution that satisfies the displacement boundary conditions is obtained by employing Navier method. The present formulation is validated based on the results obtained using the finite element method and parametric studies are then carried out to illustrate the effects of various parameters on its dynamic characteristics. The results show that the natural frequency of the structure increases with the increase of the rib height and width; as the rib height and width increase, the structural loss factor decreases; when the shear modulus of the two damping layers is relatively large, the natural frequency and loss factor of the structure are no longer sensitive to changes in the ratio of its shear modulus.
Key words: Viscoelastic materials; Co-curing; Natural frequency; Loss factor; Stiffened structure

关键词

粘弹性材料 / 共固化 / 固有频率 / 损耗因子 / 带筋结构

Key words

Viscoelastic materials / Co-curing / Natural frequency / Loss factor / Stiffened structure

引用本文

导出引用
王绍清1,郑长升2,梁森3. 嵌入双层阻尼薄膜共固化复合材料带筋结构的自由振动[J]. 振动与冲击, 2022, 41(23): 293-299
WANG Shaoqing1, ZHENG Changsheng3, LIANG Sen2. Free vibration of co-cured composite stiffened structure embedded with double-layer damping films[J]. Journal of Vibration and Shock, 2022, 41(23): 293-299

参考文献

[1] Barkanov E, Eglītis E, Almeida F, et al. Weight optimal design of lateral wing upper covers made of composite materials[J]. Engineering Optimization, 2016, 48(9): 1618-1637.
[2] 王绍清,刘鹏,梁森.复合材料层合板动力学性能及影响参数的研究[J].玻璃钢/复合材料,2018(12):36-40.
[3] 贺红林,周楠兰,刘文光,袁维东. 粘弹性阻尼板结构减振动力学特性分析与优化[J].计算机仿真,2015,32(07):203-207.
HE Hong-lin, ZHOU Nan-lan, LIU Wen-guang, YUAN Wei-dong. Analysis of vibration suppression characteristics of plank structure layered by visco-elastic damping materials[J]. Computer Simulation, 2015,32(07):203-207.
[4] Huang Z, Qin Z, Chu F, et al. A compression shear mixed finite element model for vibration and damping analysis of viscoelastic sandwich structures[J]. Journal of Sandwich Structures and Materials, 2019, 21(6):1775-1798.
[5] 张少辉, 陈花玲. 共固化复合材料黏弹阻尼结构的损耗因子研究[J].航空材料学报,2005, 25(1): 53-57.
ZHANG Shao-hui, CHEN Hua-ling. Damping analysis of cocured composites with interleaved viscoelastic layers[J]. Journal of Aeronautical Materials,2005,25(01):52-57.
[6] 翟彦春,梁森,付小静.嵌入式共固化复合材料夹芯板结构的自由振动[J].振动与冲击,2017,36(16):229-233. 
ZHAI Yan-chun, LIANG Sen, FU Xiao-jing. Free vibration of a embedded co-cured composite sandwich plate[J]. Journal of Vibration and Shock, 2017, 36(16):229-233.
[7] 刘岚,刘雨侬,刘超,刘更,吴立言,岳彦炯.考虑阻尼材料频变特性的结构响应计算方法[J].振动与冲击,2019,38(24):56-62.
LIU Lan, LIU Yu-nong, LIU Chao, LIU Geng, Wu Li-yan, YUE Yan-jiong. A calculation method of structural response considering dynamic characteristics of damping materials[J]. Journal of Vibration and Shock, 2017, 2019,38(24):56-62.
[8] Kolahchi R. A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods [J]. Aerospace Science and Technology, 2017, 66: 235-248.
[9] 孙巍,翟玉文,梅志远.复合材料加筋夹层板动力学固有特性影响因素分析[J].船舶工程,2014,36(03):99-102.
Sun Wei, ZHAI Yu-wen, MEI Zhi-yuan. Analysis of the dynamic natural characteristic influencing factors to composite reinforced sandwich plate[J]. Ship Engineering, 2014,36(03):99-102.
[10] Kamareh F, Farrokhabadi A, Rahimi G, et al. Experimental and numerical investigation of skin/lattice stiffener debonding growth in composite panels under bending loading[J]. Engineering Fracture Mechanics, 2018, 190:471-490.
[11]] Fotsing E R, Leclerc C, Sola M, et al. Mechanical properties of composite sandwich structures with core or face sheet discontinuities[J]. Composites Part B-engineering, 2016:229-239
[12] Kamareh F, Farrokhabadi A, Rahimi G. Experimental and numerical investigation of skin/lattice stiffener debonding growth in composite panels under bending loading[J]. Engineering Fracture Mechanics, 2018, 190: 471-490.
[13] Fotsing E R, Leclerc C, Sola M, et al. Mechanical properties of composite sandwich structures with core or face sheet discontinuities[J]. Composites Part B-engineering, 2016, 88:229-239
[14] Sun W, Yan X, Gao F, et al. Analysis of frequency-domain vibration response of thin plate attached with viscoelastic free layer damping[J]. Mechanics Based Design of Structures and Machines, 2018, 46(2):209-224.
[15] Ni Z, Zhou K, Huang X, et al. Free vibration of stiffened laminated shells of revolution with a free-form meridian and general boundary conditions[J]. International Journal of Mechanical Sciences, 2019, 157: 561-573.
[16] Gupta A, Ghosh A. Static and transient analysis of sandwich composite plates using isogeometric analysis[J]. Mechanics of Advanced Materials and Structures, 2019, 26(1):81-87.

PDF(1774 KB)

Accesses

Citation

Detail

段落导航
相关文章

/