We propose a segmented time-domain identification method for stationary random dynamic load by sensitivity analysis. The stationary random load sample is divided into several segments, and the dynamic load in each segment is expressed as the superposition of sine-series. The amplitude of the corresponding sine-series term is determined by the sensitivity iterative analysis, so as to obtain the stationary random dynamic load of each segment. The stationary random dynamic load samples are obtained by combining all the identified dynamic load segments. The experimental results show that the proposed sensitivity analysis identification method can well identify the stationary random load acting on the structure, and has a good anti-noise performance.
Key words: structural dynamic load, sensitivity analysis, load identification, stationary random load
XIA Peng1,2, YANG Te1, WANG Le1, YANG Zhichun1.
Identification of stationary random dynamic load based on sensitivity analysis[J]. Journal of Vibration and Shock, 2022, 41(23): 300-306
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Bartlett F D, Flannelly W G. Model verification of force determination for measuring vibratory loads[J]. Journal of the American Helicopter Society, 1979, 24(2): 10-18.
[2] Hansen M, Starkey J M. On predicting and improving the condition of Modal-Model-based indirect force measurement algorithms[C]. Proceeding of the 8th IMAC, 1990, 115-120.
[3] Karlsson S E S. Identification of external structural loads from measured harmonic responses[J], Journal of Sound and Vibration, 1996, 196: 59-74.
[4] O'Callahan J, Piergentili F. Force estimation using operational data[C]. Proceedings of the 14rd international modal analysis conference (IMAC). XIV, USA, 1996, 1586-1592.
[5] Jia Y, Yang Z C, Song Q. Experimental study of random dynamic loads identification based on weighted regularization method[J]. Journal of Sound & Vibration, 2015, 342:113-123.
[6] Jia Y, Yang Z C, Guo N, et al. Random dynamic load identification based on error analysis and weighted total least squares method[J]. Journal of Sound & Vibration, 2015, 358(3):111-123.
[7] Law S S, Chan T H T, Zeng Q H. Moving force identification: a time domain method[J]. Journal
of Sound and Vibration, 1997, 201: 1-22.
[8] Jiang X Q, Hu H Y. Reconstruction of distributed dynamic loads on an Euler beam via mode-selection and consistent spatial expression[J]. Journal of Sound & Vibration, 2008, 316(1):122-136.
[9] Jiang X Q, Hu H Y. Reconstruction of distributed dynamic loads on a thin plate via mode-selection and consistent spatial expression[J]. Journal of Sound & Vibration, 2009, 323(3):626-644.
[10] 陈帅, 杨智春, 李斌, 党会学. 动载荷时域半解析识别方法[J]. 振动与冲击, 2012,31(13): 99-104.
Chen Shuai, Yang Zhichun, Li Bin, et al. Semi-analytical method to identify dynamic load in time domain[J]. Journal of Vibration and Shock, 2012, 31(13): 99-104+118.
[11] 夏鹏,杨特,徐江,王乐,杨智春.利用时延神经网络的动载荷倒序识别[J/OL].航空学报. https://kns.cnki.net/kcms/detail/11.1929.V.20201027.1840.002.html
Xia Peng, Yang Te, Xu Jiang, et al. Reversed time sequence dynamic load identification method using time delay neural network[J]. Acta Aeronautica et Astronautica Sinica, 1-9. http:// kns. cnki.net/kcms/ detail/11.1929.V.20201027.1840.002.html.
[12] Li K, Liu J, Wen J, Lu C. Time domain identification method for random dynamic loads and its application on reconstruction of road excitations. International Journal of Applied Mechanics[J]. 2020, 12(8). doi: 10. 1142/ S1758825120500878.
[13] Jie Liu, Xingsheng Sun, Xu Han, Chao Jiang, Dejie Yu. Dynamic load identification for stochastic structures based on Gegenbauer polynomial approximation and regularization method[J]. Mechanical Systems and Signal Processing, 2015, 56–57: 35-54.
[14] Jie Liu, Kun Li.Sparse identification of time-space coupled distributed dynamic load[J]. Mechanical Systems and Signal Processing,2021,148:107177.
[15] 毛玉明,郭杏林,赵岩,吕洪彬.基于灵敏度分析的结构动态载荷识别研究[J].振动与冲击,2010,29(10):1-3+247.
Mao Yuming, Guo Xinlin, Zhao Yan, et al. Force identification based on sensitivity analysis method[J]. Journal of Vibration and Shock, 2010, 29(10): 1-3+247.
[16] Tikhonov N. On solving incorrectly posed problems and method of regularization. Doklady Akademii Nauk USSR,1963.
[17] 王乐, 杨智春, 谭光辉, 等. 基于固有频率向量的结构损伤检测实验研究[J]. 机械强度, 2008, 30(6):897-902.
Wang Le, Yang Zhichun, Tan Guanghui, et al. Experimental investigation of structural damage detection based on the natural frequency vector[J]. Journal of Mechanical Strength, 2008, 30(6):897-902.