段塞流对弯管瞬态冲击的三维CFD数值模拟研究

康竞澜1,刘昉1,侯庆志1,何军龄2,林磊3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (23) : 322-329.

PDF(2013 KB)
PDF(2013 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (23) : 322-329.
论文

段塞流对弯管瞬态冲击的三维CFD数值模拟研究

  • 康竞澜1,刘昉1,侯庆志1,何军龄2,林磊3
作者信息 +

3-D CFD numerical simulation of transient impact of slug flow on elbow

  • KANG Jinglan1, LIU fang1, HOU Qingzhi1, HE Junling2, LIN Lei3
Author information +
文章历史 +

摘要

在核电站和火电站管路系统中,来自上游的高压蒸汽可使管道中的凝结水团(段塞)加速运动,并在弯管、三通、阀门等非连续部位产生剧烈的冲击力,从而对管道造成严重破坏,影响电站的安全运行。针对管道中段塞运动的高维动力学特性,文章运用CFD对单个段塞在含弯头空管中的运动与冲击过程进行了三维数值模拟研究,并将数值模拟结果与文献中的物理实验结果进行了比较。结果表明:CFD模拟的冲击压力时程曲线及压力峰值都与实验结果具有良好的一致性。同时,基于理论分析,提出并详细论述了冲击过程中压力随时间变化的三种趋势,并通过数值模拟验证了其正确性;通过分析段塞长度的时程变化,得到了段塞的质量脱落率曲线;基于数值模拟得到的段塞瞬时冲击速度,验证了简化的冲击压力理论计算方法,发现理论计算值与实验以及数值模拟结果基本吻合。这证明了CFD数值模拟的准确性以及冲击压力简化计算方法的合理性,二者在实际工程应用中具有指导意义。
关键词:段塞流;弯管冲击;三维CFD数值模拟;气液两相流;VOF

Abstract

In the piping system of power plants, the high upstream steam pressure accelerates the condensed water mass in the pipeline and exerts violent impact on the obstacles such as elbow, tee and valve. This could cause serious damage to the obstacles and the pipeline, and affect the safe operation of the plant. Considering the high-dimensional characteristics of the liquid slug motion, in this paper, 3D CFD model is developed and applied to simulate the motion and impact processes of the liquid slug, and the simulations are compared with the experimental results in the literature. It is shown that both the time history curves and the peaks of the impact pressure are in good agreement with physical experiments. At the same time, based on theoretical analysis, three  pressure trends are proposed and discussed during the impact process and their results are verified by numerical simulations. By analyzing the time history of the slug length, a mass loss rate curve is obtained. Moreover, based on the obtained instantaneous slug impact velocity, a simplified method for calculation of the impact pressure is verified. It is found that the theoretical calculations are in good agreement with both the experimental and numerical solutions. These results indicate that the CFD model and the proposed calculation method for the peak pressure are reliable tools for predicting the motion of the liquid slug in the pipeline and its impact on the elbow, both of which have the prospect in practical applications.
Key words: Slug flow; Elbow impact; 3D CFD numerical simulation; Gas-liquid two phase flow; VOF

关键词

段塞流 / 弯管冲击 / 三维CFD数值模拟 / 气液两相流 / VOF

Key words

Slug flow / Elbow impact / 3D CFD numerical simulation / Gas-liquid two phase flow / VOF

引用本文

导出引用
康竞澜1,刘昉1,侯庆志1,何军龄2,林磊3. 段塞流对弯管瞬态冲击的三维CFD数值模拟研究[J]. 振动与冲击, 2022, 41(23): 322-329
KANG Jinglan1, LIU fang1, HOU Qingzhi1, HE Junling2, LIN Lei3. 3-D CFD numerical simulation of transient impact of slug flow on elbow[J]. Journal of Vibration and Shock, 2022, 41(23): 322-329

参考文献

[1] 侯庆志,李顺达,林磊等. 蒸汽管内运动水团对管端结构瞬态冲击研究综述[J]. 核科学与工程, 2019, 39(2): 179-188.
Hou Qing-zhi, Li Sun-da, Lin Lei, et al. Impact force on end obstacles due to water slug travelling in a void steam line: A review[J]. Chinese Journal of Nuclear Science and Engineering, 2019, 39(2): 179-188.
[2] 刘叔千,周美五. 核电厂蒸汽管道中水团冲击(水锤)的分析[J]. 核科学与工程, 1995, 3(3): 226-231.
 Liu Shu-qian, Zhou Mei-wu. Analysis of water slug impact (water hammer) in the steam pipes of NPP[J]. Chinese Journal of Nuclear Science and Engineering, 1995, 3(3): 226-231.  
[3] 王伟吉,吴炜,张景等. 管道气液两相严重段塞流的数值模拟与分析[J]. 振动与冲击, 2018, 37(6): 140-146.
   Wang Wei-ji, Wu Wei, Zhang Jing, et al. Numerical simulation and analysis of gas-liquid two-phase severe slug flow in pipeline[J]. Journal of Vibration and Shock, 2018, 37(6): 140-146.
[4] Fenton RM, Griffith P. The force at a pipe elbow due to the clearing of water trapped upstream[C]. Transient Thermal Hydraulics and Resulting Loads on Vessel and Piping Systems, ASME, 1990, PVP190, 59-67.
[5] Neumann A, Griffith P. Forces on a pipe elbow resulting from clearing a pool of liquid upstream[C]. Fluid-Structure Interaction, Transient Thermal Hydraulics and Structural Mechanics, ASME, 1992, PVP231, 135-140.
[6] Bozkus Z, Wiggert DC. Liquid slug motion in a voided line[J]. Journal of Fluids & Structures, 1997, 11: 947-963.
[7] Owen I, Hussein IB. The propulsion of an isolated slug through a pipe and the forces produced as it impacts upon an orifice plate[J]. International Journal of Multiphase Flow, 1994, 20(3): 659-666.
[8] Kayhan BA, Bozkus Z. A new method for prediction of the transient force generated by a water slug impact on an elbow of an initially voided line[J]. Journal of Pressure Vessel Technology, 2011, 133, 021701.
[9] Tijsseling AS, Hou Q, Bozkus Z. An improved 1D model for water slugs traveling in pipelines[C]. Proceedings of the ASME Pressure Vessels & Piping Division Conference, PVP2014, July 20-24, 2014, Anaheim, California, USA.
[10] Hou Q. Simulating Unsteady Conduit Flows with Smoothed Particle Hydrodynamics[D]. PhD Thesis, Eindhoven University of Technology, 2012.
[11] Fenton RM. The Force at a Pipe Bend due to the Clearing of Water Trapped Upstream[D]. Master Thesis, MIT, 1989.
[12] Hou Q, Tijsseling AS, Bozkus Z. Dynamic force on an elbow caused by a traveling water slug[J]. Journal of Pressure Vessel Technology, 2014, 136, 031302.
[13] Bozkus Z, Baran OU, Ger M. Experimental and numerical analysis of transient water slug motion in a voided line[J]. Journal of Pressure Vessel Technology, 2004, 126: 241-249.
[14] 李顺达. 弹状流对管端结构高速冲击的数值模拟[D]. 天津大学, 2019.
Li Sun-da. Numerical Simulation of High Velocity Liquid Slug Impact at Pipe Obstacles[D]. Master Thesis, Tianjin University, 2019.
[15] 侯庆志,李顺达,林磊. 核电厂蒸汽管道中高速运动水团冲击研究[J]. 核科学与工程, 2019, 39(1): 18-23.
  Hou Qing-zhi, Li Sun-da, Lin Lei. High velocity water slug impact in steam pipelines of NPP[J]. Chinese Journal of Nuclear Science and Engineering, 2019, 39(1): 18-23
[16] Laanearu J, Annus I, Koppel T, et al. Emptying of large-scale pipeline by pressurized air[J]. Journal of Hydraulic Engineering, 2012, 138(12): 1090-1100.

PDF(2013 KB)

Accesses

Citation

Detail

段落导航
相关文章

/