为研究直齿锥齿轮传动的动态特性,建立考虑多状态啮合特性的直齿锥齿轮传动系统弯-扭-轴动力学模型。根据锥齿轮啮合原理,用微元法计算系统载荷分配率和时变啮合刚度。以某汽车差速器中直齿锥齿轮参数为例,采用变步长四阶Lunge-Kutta法求解系统非线性动力学方程。定义三种不同Poincaré截面,结合正压力时间历程图、相图、Poincaré映射图、分岔图及最大Lyapunov指数,研究啮合频率与综合传递误差对系统动力学特性的影响。研究结果可为直齿锥齿轮传动系统参数设计及动态特性控制提供理论依据。
关键词:直齿锥齿轮;多状态啮合;时变参量;非线性动力学;微元法
Abstract
In order to study the dynamic characteristics of straight bevel gear transmission system, its bending- torsional-axial dynamics model considered the multi-state meshing characteristics is established. The time-varying load distribution rate and time-varying meshing stiffness of the system are calculated by using the microelement method according to the meshing principle of straight bevel gear. Taking the parameters of straight bevel gear in an automobile differential as an example. Three different Poincaré sections are defined. The effects of meshing frequency and comprehensive transmission error on the dynamic characteristics of the system are studied according to the time history diagram of positive pressure, phase portraits, Poincaré maps, bifurcation diagram and corresponding top Lyapunov exponent (TLE). The results can supply a theoretical basis for the parameter design and control of dynamics characteristic for spur bevel gear transmission system.
Key words: Straight bevel gear; Multi-state meshing; Time-varying parameters; Nonlinear dynamics; Micro element method.
关键词
直齿锥齿轮 /
多状态啮合 /
时变参量 /
非线性动力学 /
微元法
{{custom_keyword}} /
Key words
Straight bevel gear /
Multi-state meshing /
Time-varying parameters /
Nonlinear dynamics /
Micro element method.
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Shi J, Gou X, Zhu L. Modeling and analysis of a spur gear pair considering multi-state mesh with time-varying parame- ters and backlash[J]. Mechanism and Machine Theory, 2019, 134: 582- 603.
[2] Zhu L, Shi J, Gou X. Modeling and dynamics analyzing of a torsional-bending-pendular face-gear drive system consider- ing multi-state engagements[J]. Mechanism and Machine Theory, 2020, 149: 103790.
[3] Karray M, Chaari F, Viadero F, et al. Dynamic Response of Single Stage Bevel Gear Transmission in Presence of Local Damage[M]. Mechanisms and Machine Science, 2013(7): 337-345.
[4] Kiyono S, Fujii Y, Suzuki Y. Analysis of Vibration of Bevel Gears[J]. Bulletin of JSME, 1981, 24(188): 441-446.
[5] Wang Y, Cheung H. 3D Dynamic Modelling of Spatial Geared Systems[J]. Nonlinear Dynamics, 2001, 26(4): 371- 391.
[6] Cheng Y, Lim T. Dynamics of Hypoid Gear Transmission With Nonlinear Time-Varying Mesh Characteristics[J]. Journal of Mechanical Design, 2003, 125: 373-382.
[7] Cheng Y, Lim T. Vibration analysis of hypoid transmissions applying an exact geometry-based gear mesh theory[J]. Journal of Sound and Vibration, 2001, 240(3):519-543.
[8] Yassine D, Ahmed H, Lassaad W, et al. Effects of gear mesh fluctuation and defaults on the dynamic behavior of two-stage straight bevel system[J]. Mechanism and Machine Theory, 2014, 82: 71-86.
[9] 方宗德, 高向群. 直齿圆锥齿轮的振动分析[J]. 机械工程学报, 1994, 30(3):65-70.
Fang Zongde, Gao Xiangqun. Analysis of vibration in straight bevel gearing [J]. Journal of Mechanical Engineering, 1994, 30(3):65-70.
[10] 王三民,沈允文,董海军.含间隙和时变啮合刚度的弧齿锥齿轮传动系统非线性振动特性研究[J].机械工程学报, 2003(02): 28-32.
Wang S, Shen Y, Dong H. Nonlinear dynamical characteri- stics of a spiral bevel gear system with back lash and time- varying stiffness[J]. Journal of Mechanical Engineering, 2003(02):28-32.
[11] 王立华. 汽车螺旋锥齿轮传动耦合非线性振动研究[D]. 重庆大学, 2003.
Wang L. Study on Coupling Non-linear Vibration of Automobile Helical Bevel Gear Transmissions System[D]. Chongqing University, 2003.
[12] 蒋函成,魏静,张爱强,等. 某直升机主减传动系统振动能量传递特性研究[J].振动与冲击,2021,40(07):95-104+170.
Jiang H, Wei J, Zhang A, et al. Study on vibration energy transfer characteristics of main reducer transmission system of a helicopter[J]. Journal of Vibration and Shock, 2021, 40 (07): 95-104+170.
[13] 机械设计手册编委会. 机械设计手册.齿轮传动:单行本-第4版[M]. 机械工业出版社, 2007.
Editorial Board of Mechanical Design Manual. Mechanical design manual. Gear transmission: single edition - 4th Edition[M]. Machine Industry Press, 2007.
[14] Lafi W, Djemal F, Tounsi D, et al. Dynamic modelling of differential bevel gear system in the presence of a defect[J]. Mechanism and Machine Theory, 2019, 139:81-108.
[15] Pedrero J, Pleguezuelos M, Artés M, et al. Load distribution model along the line of contact for involute external gears[J]. Mechanism and Machine Theory, 2010, 45:780-794.
[16] Peng Y, Zhao N, Qiu P, et al. An efficient model of load distribution for helical gears with modification and misalignment[J]. Mechanism and Machine Theory, 2018, 121: 151-168.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}