空气阻尼网孔式弹性垫减振单元理论模型研究

和振兴,白彦博,包能能,贠剑峰,石广田

振动与冲击 ›› 2022, Vol. 41 ›› Issue (23) : 94-101.

PDF(1675 KB)
PDF(1675 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (23) : 94-101.
论文

空气阻尼网孔式弹性垫减振单元理论模型研究

  • 和振兴,白彦博,包能能,贠剑峰,石广田
作者信息 +

Theoretical model of air damping mesh type elastic cushion vibration reduction element

  • HE Zhenxing, BAI Yanbo, BAO Nengneng, YUN Jianfeng, SHI Guangtian
Author information +
文章历史 +

摘要

弹性垫在减振和隔震领域应用广泛,为了提高弹性垫的阻尼,提出一种具有空气阻尼的网孔式弹性垫结构。利用材料的弹性差异,在网孔式弹性垫不同材质层内形成主气室和附气室,两个气室之间用节流孔联通。建立了空气阻尼网孔式弹性垫减振单元的理论模型,研究发现节流孔孔径、气室体积比是影响弹性垫刚度和阻尼的关键参数。有限元计算结果表明随着节流孔孔径的增大,弹性垫的动刚度随之增大,阻尼的变化趋势与刚度相反;减小气室体积比,弹性垫的动刚度会随之减小,而阻尼比会增大。节流孔孔径和气室体积比对弹性垫阻尼的影响比刚度明显,其中气室体积比对阻尼的影响最为显著。
关键词:空气阻尼;弹性垫;节流孔孔径;气室体积比;阻尼比

Abstract

Elastic cushions are widely used in the fields of vibration reduction and isolation. In order to improve the damping of the elastic cushions, a mesh type elastic cushion structure with air damping is proposed. Taking advantage of the difference in material elasticity, a main air chamber and an auxiliary air chamber are formed in different material layers of the mesh-type elastic cushion, and the two air chambers are connected by a throttle hole. The theoretical model of the air damping mesh elastic cushion vibration damping unit was established. The study found that the orifice aperture and the air chamber volume ratio are the key parameters affecting the stiffness and damping of the elastic cushion. The finite element calculation results show that as the aperture of the orifice increases, the dynamic stiffness of the elastic cushion increases, and the damping trend is opposite to the stiffness; reducing the air chamber volume ratio, the dynamic stiffness of the elastic cushion will decrease accordingly , And the damping ratio will increase. The orifice aperture and the air chamber volume ratio have a more obvious influence on the damping of the elastic cushion than the stiffness, and the air chamber volume ratio has the most significant influence on the damping.
Key words:  Air damping; Elastic cushion; Orifice diameter; Air chamber volume ratio; Damping ratio

关键词

空气阻尼 / 弹性垫 / 节流孔孔径 / 气室体积比 / 阻尼比

Key words

Air damping / Elastic cushion / Orifice diameter / Air chamber volume ratio / Damping ratio

引用本文

导出引用
和振兴,白彦博,包能能,贠剑峰,石广田. 空气阻尼网孔式弹性垫减振单元理论模型研究[J]. 振动与冲击, 2022, 41(23): 94-101
HE Zhenxing, BAI Yanbo, BAO Nengneng, YUN Jianfeng, SHI Guangtian. Theoretical model of air damping mesh type elastic cushion vibration reduction element[J]. Journal of Vibration and Shock, 2022, 41(23): 94-101

参考文献

[1] 张玉良, 汪洋, 张铜生. 考虑橡胶垫弹塑性性能及结构阻尼比变化的隔震结构动力分析[J]. 工程力学, 2002, 19(2): 58-63.
Zhang Yuliang, Wang Yang, Zhang Tongsheng. Dynamic analysis of base-isolated structures considering nonlinear behavior of elastomeric bearings and variation of damping ratios [J]. Engineering Mechanics, 2002, 19(2): 58-63.
[2] 赵雷雷, 于曰伟, 周长城, 等. 特种车辆驾驶室减振器节流阀片开度及阻尼特性研究[J]. 兵工学报, 2018, 39(04): 645-654.
Zhao Leilei, Yu Yuewei, Zhou Changcheng, et al. Study on the opening and damping characteristics of the throttle plate of the shock absorber in the special vehicle cab[J]. Acta Armamentarii, 2018, 39(04): 645-654.
[3] 孙船斌, 马大为, 朱忠领. 减震垫对导弹水下垂直发射横向振动的影响[J]. 振动与冲击, 2014, 33(18): 31-35.
Sun Chuanbin, Ma Dawei, Zhu Zhongling. The effect of shock-absorbing pads on the lateral vibration of missile underwater vertical launching [J]. Vibration and Shock, 2014, 33(18): 31-35.
[4] 杨俊, 池茂儒, 朱旻昊, 等. 轨道车辆用弹性橡胶垫非线性模型研究[J]. 振动工程学报, 2016, 29(02): 291-297.
Yang Jun, Chi Maoru, Zhu Minhao, et al. Research on nonlinear model of elastic rubber pads for rail vehicles[J]. Chinese Journal of Vibration Engineering, 2016, 29(02): 291-297.
[5] 孙亮明, 胡振, 杜友福, 等. 高架轨道桥梁新型橡胶减振支座的减振效果分析[J]. 振动与冲击, 2020, 39(08): 64-71.
Sun Liangming, Hu Zhen, Du Youfu, et al. Vibration reduction effect analysis of a new type of rubber damping support for elevated track bridges[J]. Journal of Vibration and Shock, 2020, 39(08): 64-71.
[6] 韦凯, 张攀, 王平. 扣件胶垫刚度的幅频变对轮轨耦合系统随机频响特征的影响[J]. 工程力学, 2017, 34(04): 108-115.
Wei Kai, Zhang Pan, Wang Ping. The influence of the amplitude-frequency variation of the stiffness of the fastener pad on the random frequency response characteristics of the wheel-rail coupling system [J]. Engineering Mechanics, 2017, 34(04): 108-115.
[7] 韦凯, 杨帆, 王平, 等. 扣件胶垫刚度频变的车/轨耦合系统随机振动虚拟辛分析[J]. 工程力学, 2016, 33(09): 123-130+137.
Wei Kai, Yang Fan, Wang Ping, et al. Virtual Symplectic Analysis of Random Vibration of Train/Track Coupling System with Frequency-Varying Stiffness of Fastener Pads [J]. Engineering Mechanics, 2016, 33(09): 123-130+ 137.
[8] 崔旭浩, 肖宏. 道砟垫有砟道床力学特性离散元分析[J]. 振动与冲击, 2020, 39(19): 141-148+181.
Cui Xuhao, Xiao Hong. Discrete element analysis of mechanical characteristics of ballasted ballast bed [J]. Vibration and Shock, 2020, 39(19): 141-148+181.
[9] 罗震. 高速铁路无砟轨道结构受力及轮轨动力作用分析[D]. 成都:西南交通大学, 2008.
Luo Zhen. Analysis of the structural forces and wheel-rail dynamic effects of high-speed railway ballastless track [D]. Chengdu: Southwest Jiaotong University, 2008.
[10] 和振兴, 石广田, 翟婉明. 一种轨道交通高阻尼位移量可调弹性垫板[P].中国, CN201820499714.5. 2018-11-17.
He Zhenxing, Shi Guangtian, Zhai Wanming. An adjustable elastic backing plate with high damping displacement for rail transit[P]. China, CN20182049971-
4.5. 2018-11-17.
[11] 翟志浩, 和振兴, 李斌, 等. 轨下新型网孔式弹性垫板力学性能影响研究[J]. 铁道标准设计, 2020, 64(04): 32-37.
Zhai Zhihao, He Zhenxing, Li Bin, et al. Research on the influence of the mechanical properties of the new mesh elastic pad under the rail [J]. Railway Standard Design, 2020, 64(04): 32-37.
[12] 和振兴, 翟婉明, 石广田, 等. 一种空气阻尼减振垫及复合阻尼减振器[P].中国, ZL201921939891.1. 2019-11-12.
He Zhenxing, Zhai Wanming, Shi Guangtian, et al. An air damping cushion and composite damping shock absorber [P]. China, ZL201921939891.1. 2019-11-12.
[13] 陈俊杰, 殷智宏, 郭孔辉, 等. 节流孔式空气阻尼系统建模及参数影响分析[J]. 振动与冲击, 2018, 37(16): 241-248.
Chen Junjie, Yin Zhihong, Guo Konghui, et al. Orifice air damping system modeling and parameter influence analysis [J]. Vibration and Shock, 2018, 37(16): 241-248.
[14] GB/T 15168-2013, 振动与冲击隔离器静, 动态性能测试方法[S].北京: 中国标准出版社,2013-12.
GB/T 15168-2013, Test method for static and dynamic performance of vibration and shock isolator [S].
[15] 赵峰, 和振兴, 石广田,等.网孔式弹性垫板动静刚度特性研究[J]. 机械强度, 2020, 42(05): 1243-1249.
Zhao Feng, He Zhenxing, Shi Guangtian, et al. Research on dynamic and static stiffness characteristics of mesh-type elastic backing plate[J]. Mechanical Strength, 2020, 42(05): 1243-1249.
[16] 王斌仓, 石广田, 和振兴,等. 填充高阻尼材料增强网孔式橡胶弹性垫板的性能[J]. 铁道建筑, 2019, 59(09): 136-141.
Wang Bincang, Shi Guangtian, He Zhenxing, et al. Filling with high damping materials to enhance the performance of mesh-type rubber elastic pads [J]. Railway Construction, 2019, 59(09): 136-141.
[17] 殷智宏. 双气室空气悬架系统理论及实验研究[D]. 长沙: 湖南大学, 2011: 1-12.
Yin Zhihong. Theoretical and experimental research on double-air chamber air suspension system [D]. Changsha: Hunan University, 2011: 1-12.
[18] BERG M. A Non-Linear Rubber Spring Model for Rail Vehicle Dynamics Analysis[J]. Vehicle System Dynamics, 1998, 30(3-4): 197-212.
[19] Mattias Sjoberg. Rubber Isolator-Measurements and Modelling using Fractional Derivatives and Friction[J]. SAE Transactions, 2000, 109(2): 873-884.
[20] 刘晶波. 结构动力学[M]. 北京: 机械工业出版社, 2005: 42-47.
Liu Jingbo. Structural dynamics [M]. Beijing: China Machinery Industry Press, 2005: 42-47.

PDF(1675 KB)

231

Accesses

0

Citation

Detail

段落导航
相关文章

/