正梯度冲击下冻结红砂岩力学性能及损伤效应研究

张慧梅1,陈世官2,王磊2,袁超2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (24) : 1-10.

PDF(2168 KB)
PDF(2168 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (24) : 1-10.
论文

正梯度冲击下冻结红砂岩力学性能及损伤效应研究

  • 张慧梅1,陈世官2,王磊2,袁超2
作者信息 +

A study on mechanical properties and damage effect of frozen red sandstone under positive gradient impact

  • ZHANG Huimei1,CHEN Shiguan2,WANG Lei2,YUAN Chao2
Author information +
文章历史 +

摘要

随着冻结法立井建设在西部矿区富水地层的大规模运用,研究冻结壁在爆破、机械破岩等不同强度冲击荷载下的力学特性及损伤效应,对解决冻结壁开裂渗水及失稳透水问题具有重要意义。因此,本文以甘肃省五举煤矿冻结凿井穿越的白垩系富水软岩为研究对象,分析不同冻结温度(25、-5、-10、-15和-20 ℃)红砂岩在正梯度冲击下(即冲击荷载逐渐加强)的动力学特性,同时采用核磁共振技术对冲击过程中红砂岩孔隙数量、面积及孔隙度的变化进行检测,分析冻结红砂岩在正梯度冲击作用下的损伤演化规律。结果表明:相较于低、中速率冲击,在高速率冲击时,冻结红砂岩应变率随冻结温度的下降变化明显,温度效应显著;不同冻结温度红砂岩的峰值应力和弹性模量增幅随冲击荷载的升高而增加;峰值应变在-5 ℃时达到最大值,在-10 ℃~-20 ℃之间随冻结温度的降低其增长趋势逐渐放缓;由T2谱曲线及谱面积可知,在正梯度冲击作用下,温度由25 ℃下降到-10 ℃,小孔隙孔径先减小后增大,数量先增加后降低,中、大孔隙孔径及数量则相反,谱面积先降低后升高,由-15 ℃下降到-20 ℃,小孔隙数量增加孔径减小,中、大孔隙数量和孔径均呈小幅稳定增长,谱面积呈小幅增长;采用孔隙度的变化定义岩石损伤度,发现在正梯度冲击作用下,-10 ℃红砂岩的损伤趋势和损伤度最大,在-5 ℃~-10 ℃区间内出现损伤薄弱区。
关键词:冻结软岩;正梯度冲击;动态损伤;霍布金森压杆试验;NMR试验

Abstract

With the large-scale application of frozen shaft construction in water rich strata in western mining area, it is of great significance to study the mechanical properties and damage effects of frozen wall under different strength impact loads such as blasting and mechanical rock breaking. This paper takes the Cretaceous water rich soft rock crossed by frozen sinking in Wuju coal mine in Gansu Province as the research object, The dynamic characteristics of red sandstone with different frozen temperatures (i.e., 25, -5, -10, -15 and -20 ℃) under positive gradient impact (The impact load is gradually strengthened) are analyzed. At the same time, the changes of pore number, area and porosity of red sandstone during impact are detected by NMR technology, and the damage evolution law of frozen red sandstone under positive gradient impact is analyzed. The results show that the strain rate of frozen red sandstone changes obviously with the decrease of frozen temperature and the temperature effect is significant compared with low and medium velocity impact; The stress and elastic modulus of red sandstone at different frozen temperatures increase with the increase of impact load; The strain reaches the maximum at - 5 ℃, and the growth trend slows down with the decrease of frozen temperature between - 10 ℃ and - 20 ℃; According to the T2 spectrum curve and spectrum area, under the positive gradient impact, the temperature decreases from 25 ℃ to - 10 ℃, the pore size of small pores first decreases and then increases, and the number first increases and then decreases, while the pore size and number of medium and large pores are on the contrary, the spectral area first decreases and then increases, and decreases from - 15 ℃ to - 20 ℃, the number of small pores increases and the pore size decreases, and the number and pore size of medium and large pores increase slightly and stably; The change of porosity is used to define the rock damage degree. It is found that under the positive gradient impact, the damage trend and damage degree of - 10 ℃ red sandstone are the largest, and there are weak damage areas in the range of - 5 ℃ ~ - 10 ℃.
Key words:frozen soft rock;positive gradient impact;dynamic damage;split Hopkinson pressure bar experiment;NMR experiment

关键词

冻结软岩 / 正梯度冲击 / 动态损伤 / 霍布金森压杆试验 / NMR试验

Key words

frozen soft rock / positive gradient impact / dynamic damage / split Hopkinson pressure bar experiment / NMR experiment

引用本文

导出引用
张慧梅1,陈世官2,王磊2,袁超2. 正梯度冲击下冻结红砂岩力学性能及损伤效应研究[J]. 振动与冲击, 2022, 41(24): 1-10
ZHANG Huimei1,CHEN Shiguan2,WANG Lei2,YUAN Chao2. A study on mechanical properties and damage effect of frozen red sandstone under positive gradient impact[J]. Journal of Vibration and Shock, 2022, 41(24): 1-10

参考文献

[1] 杨更社,屈永龙,奚家米,等. 西部白垩系富水基岩立井冻结压力实测研究[J]. 采矿与安全工程学报,2014,31(6):982–986.
YANG Gengshe,QU Yonglong,XI Jiami,et al. In-situ measurement and study of freezing pressure of shaft in western cretaceous water-rich bedrock[J]. Journal of Mining and Safety Engineering, 2014, 31(6): 982-986.
[2] 李祖勇, 杨更社, 魏尧. 白垩系冻结砂岩解冻过程中蠕变力学特性研究[J]. 岩石力学与工程学报, 2021, 40(09).
LI Zuyong, YANG Gengshe, WEI Yao. Study on creep mechanical properties of frozen cretaceous sandstone during thawing process[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(09).
[3] 王磊, 陈世官, 李祖勇. 软岩冻结凿井井帮稳定性影响因素敏感性分析[J]. 西安科技大学学报, 2018, 38(01): 79-84.
WANG Lei, CHEN Shiguan, LI Zuyong. Sensitivity analysis of influential factors of surrounding rock stability in soft rock freezing sinking[J]. Journal of Xi’an University of Science and Technology, 2018, 38(01): 79-84.
[4] SHEN Y J, YANG Y, Yang G S, et al. Damage characteristics and thermo-physical properties changes of limestone and sandstone during thermal treatment from 30℃ to 1000 ℃[J]. Heat and Mass Transfer, 2018.
[5] SHEN Y J, WANG Y Z, ZHAO X D, et al. The influence of temperature and moisture content on sandstone thermal conductivity from a case using the artificial ground freezing(AGF) method[J]. Cold regions science and technology, 2018, 155(NOV.):149-160.
[6] BAI Y, SHAN R L, JU Y, et al. Study on the mechanical properties and damage constitutive model of frozen weakly cemented red sandstone[J]. Cold Regions Science and Technology, 2019, 171:102980.
[7] BAI Y, SHAN R L, JU Y, et al. Experimental study on the strength, deformation and crack evolution behaviour of red sandstone samples containing two ice-filled fissures under triaxial compression[J]. Cold Regions Science and Technology, 2020, 174:103061.
[8] 刘波, 马永君, 盛海龙, 等. 不同围压与冻结温度下白垩系红砂岩力学性质试验研究[J].岩石力学与工程学报,2019,38(03):455-466.
LIU Bo, MA Yongjun, SHENG Hailong, et al. Experimental study on mechanical properties of Cretaceous red sandstone under different freezing temperatures and confining pressures[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(3): 455-466.
[9] 刘波, 孙颜顶, 袁艺峰, 等. 不同含水率冻结砂岩强度特性及强度强化机制[J].中国矿业大学报, 2020, 49(06): 1085-1093+1127.
LIU Bo, SUN Yanding, YUAN Yifeng, et al. Experimental study on mechanical properties of Cretaceous red sandstone under different freezing temperatures and confining pressures[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 49(06): 1085-1093+1127.
[10] WANG T, SUN Q, JIA H L, et al. Linking the mechanical properties of frozen sandstone to phase composition of pore water measured by LF-NMR at subzero temperatures[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(6):4501-4513.
[11] LIU C J, DENG H W, CHEN X M, et al. Impact of Rock Samples Size on the Microstructural Changes Induced by Freeze–Thaw Cycles[J]. Rock Mechanics and Rock Engineering, 2020(1).
[12] PAN Z, ZHOU K P, GAO R G, et al. Research on the Pore Evolution of Sandstone in Cold Regions under Freeze-Thaw Weathering Cycles Based on NMR[J]. Geofluids, 2020, 2020(10):1-12.
[13] WANG L, QIN Y, JIA H B, et al. Study on Mechanical Properties and Energy Dissipation of Frozen Sandstone under Shock Loading[J]. Shock and Vibration, 2020, 2020(4):1-12.
[14] WANG L, SU H M, QIN Y, et al. Study on Dynamic Constitutive Model of Weakly Consolidated Soft Rock in Western China[J]. Shock and Vibration, 2020, 2020(s2):1-13.
[15] 马冬冬, 马芹永, 黄坤, 等. 动静组合加载下不同负温人工冻结粉质黏土强度和变形特性分析[J]. 振动与冲击, 2022, 41(01):154-160.
MA Dongdong, MA Qinyong, HUANG Kun, et al. Strength of artificially frozen silty clay with different negative temperatures under dynamic and static combined loading and deformation characteristic analysis[J]. Journal of Vibration and Shock, 2022, 41(01):154-160.
[16] MA D, MA Q Y, YUAN P. SHPB tests and dynamic constitutive model of artificial frozen sandy clay under confining pressure and temperature state[J]. Cold Regions Science and Technology, 2017, 136(APR.):37-43.
[17] SHAN R L, SONG Y W, SONG L W, et al. Dynamic property tests of frozen red sandstone using a split hopkinson pressure bar[J]. Earthquake Engineering and Engineering Vibration, 2019.
[18] HU N, LI C H, XIAO Y G, et al. Mechanical response and energy dissipation characteristics of granite under low velocity cyclic impact[J]. IOP Conference Series: Earth and Environmental Science, 2021, 781(4):042043 (9pp).
[19] LI J Z. Constitutive model of water-saturated marble under coupling effects of uniaxial impact compressive loading and low-temperature[J]. Acta Geodynamica et Geomaterialia, 2020:155-166.
[20] 张蓉蓉, 经来旺, 马冬冬. 冻融和热冲击循环作用后红砂岩SHPB试验和本构模型研究[J]. 振动与冲击, 2022, 41(09):267-275.
ZHANG Rongrong, JING Laiwang, MA Dongdong. SHPB tests and constitutive model of red-sandstone after freeze-thaw and thermal shock cycles[J]. Journal of Vibration and Shock, 2022, 41(09):267-275.
[21] YANG R S, FANG S Z, GUO D M, et al. Study on Dynamic Tensile Strength of Red Sandstone Under Impact Loading and Negative Temperature[J]. Geotechnical and Geological Engineering, 2019.
[22] 张慧梅, 陈世官, 王磊, 等. 扰动冲击下弱胶结红砂岩的能量耗散与分形特征[J]. 岩土工程学报, 2022, 44(04): 622-631.
ZHANG Huimei, CHEN Shiguan, WANG Lei, et al. Energy dissipation and fractal characteristics of weakly cemented red sandstone under disturbance impact[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(04): 622-631.
[23] YANG R S, FANG S Z, LI W Y, et al. Temperature effects on dynamic compressive behavior of siliceous sandstone[J]. Arabian Journal of Geosciences, 2020, 13(10):1-13.
[24] 纪杰杰, 李洪涛, 吴发名, 等. 冲击荷载作用下岩石破碎分形特征[J]. 振动与冲击, 2020, 39(13):176-183+214.
JI Jiejie, LI Hongtao, WU Faming, et al. Fractal characteristics of rock fragmentation under impact load[J]. Journal of Vibration and Shock, 2020, 39(13):176-183+214.
[25] 杜超超, 温森, 孔庆梅. 一维动静组合加载下复合岩样动态力学特性试验研究[J].振动与冲击, 2021, 40(21):168-178+206.
DU Chaochao, WEN Sen, KONG Qingmei. Tests for dynamic mechanical properties of composite rock samples under 1-D dynamic-static combined loading[J]. Journal of Vibration and Shock, 2021, 40(21):168-178+206.
[26] 焦振华, 穆朝民, 王磊, 等. 被动围压下煤冲击压缩动态力学特性试验研究[J].振动与冲击, 2021, 40(21):185-193.
JIAO Zhenhua, MU Chaomin, WANG Lei, et al. Tests for dynamic mechanical properties of coal impact compression under passive confining pressure[J]. Journal of Vibration and Shock, 2021, 40(21):185-193.

PDF(2168 KB)

Accesses

Citation

Detail

段落导航
相关文章

/