大高宽比浮放馆藏文物运动状态影响因素研究

杨维国1,葛家琪2,张家铭1,王萌1,刘佩1,邹晓光1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (24) : 134-141.

PDF(3169 KB)
PDF(3169 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (24) : 134-141.
论文

大高宽比浮放馆藏文物运动状态影响因素研究

  • 杨维国1,葛家琪2,张家铭1,王萌1,刘佩1,邹晓光1
作者信息 +

Research on influencing factors of freestanding cultural relics in a museum with high aspect ratio

  • YANG Weiguo1,GE Jiaqi2,ZHANG Jiaming1,WANG Meng1,LIU Pei1,ZOU Xiaoguang1
Author information +
文章历史 +

摘要

为了更有效地探究浮放馆藏文物运动状态的影响因素,采用振动台试验和数值试验探究了单向水平激励下浮放文物运动状态的基本规律。选取了质心高宽比为3.7的陶瓷花瓶分别在单向的简谐波和地震波下进行了振动台试验。并根据实际尺寸建立了精细化的有限元模型并与试验结果进行对比,并利用验证后的有限元模型,对激励加速度、接触面的摩擦系数以及展台面的倾斜度进行了参数化分析,结果表明:试件的高宽比、形状,接触面的粗糙度和倾斜度以及激励的频率、幅值特性均是浮放系统运动状态的影响因素,其中运动状态对摩擦系数十分敏感。圆形底面的花瓶在单向激励下容易出现扭转现象,为保证浮放文物的安全,应尽量保持展台面水平。

Abstract

In order to explore the factors affecting the motion state of cultural relics in freestanding collection more effectively, shaking table test and numerical test were used to explore the basic law of the motion state of freestanding cultural relics under unidirectional horizontal excitation. The ceramic vase with a centroid aspect ratio of 3.7 was selected to carry out shaking table tests under unidirectional harmonic and seismic waves, respectively. According to the actual size, a fine finite element model is established and compared with the experimental results, and the excitation acceleration, the friction coefficient of the contact surface and the inclination of the booth surface are parameterized by using the verified finite element model. The results show that the aspect ratio and shape of the specimen, the roughness and inclination of the contact surface, and the frequency and amplitude characteristics of the excitation are all factors affecting the motion state of the freestanding system. The motion state is very sensitive to the friction coefficient. The vase with circular bottom is easy to twist under one-way excitation. in order to ensure the safety of freestanding cultural relics, the level of the exhibition surface should be kept as far as possible.

关键词

浮放文物 / 运动状态 / 动力响应 / 有限元分析

Key words

 freestanding relics / motion state / dynamic response / finite element analysis

引用本文

导出引用
杨维国1,葛家琪2,张家铭1,王萌1,刘佩1,邹晓光1. 大高宽比浮放馆藏文物运动状态影响因素研究[J]. 振动与冲击, 2022, 41(24): 134-141
YANG Weiguo1,GE Jiaqi2,ZHANG Jiaming1,WANG Meng1,LIU Pei1,ZOU Xiaoguang1. Research on influencing factors of freestanding cultural relics in a museum with high aspect ratio[J]. Journal of Vibration and Shock, 2022, 41(24): 134-141

参考文献

[1] 马伯涛, 王毅, 杨维国, 等. 博物馆文物微振疲劳试验与分析研究[J]. 振动与冲击, 2015, 34(23): 62-67.
MA Botao, WANG Yi, YANG Weiguo, et al. The slight fatigue experiment and numerical analysis study on museum collections [J]. Journal of Vibration and Shock, 2015, 34(23): 62-67.
[2] 葛家琪, 马伯涛. 中国博物馆收藏文物一体化防震技术研究进展[J]. 中国博物馆, 2021(01): 10-16+126.
GE Jiaqi, MA Botao. Research progress of integrated earthquake protection technology for Cultural relics collected by Chinese Museums [J]. Museum of China, 2021(01): 10-16+126.  
[3] 葛家琪, 马伯涛, 庞玉涛, 等. 汽车所致虎门遗址振动全过程性能化研究[J]. 振动与冲击, 2014, 33(14): 95-100.
GE Jiaqi, MA Botao, PANG Yutao, et al. Performance-based study on the whole process of vibration of Humen site caused by cars [J]. Journal of Vibration and Shock, 2014, 33 (14): 95-100.
[4] 吴来明, 王忠良, 高华平, 等. 博物馆文物的防震保护研究(一)──传统抗震措施与现代隔震技术[J]. 文物保护与考古科学, 2001, 13(2): 46 − 53.
WU Laiming, WANG Zhongliang, GAO Huaping, et al. Research on protection from earthquake of cultural relics in museum (1) ── Traditional anti-shock methods and modern isolating techniques [J]. Science of Conservation and Archaeology, 2001, 13(2): 46 − 53.
[5] Zhang J, Makris N. Rocking response of free-standing blocks under cycloidal pulses [J]. Journal of Engineering Mechanics, 2001, 127(5): 473-483.
[6] Ishiyama Y. Motions of rigid bodies and criteria for overturning by earthquake excitations [J]. Earthquake Engineering and Structural Dynamics, 1982, 10(5): 635-650.
[7] Doherty K , Griffith M C, Lam N, et al. Displacement-based seismic analysis for out-of-plane bending of unreinforced masonry walls[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(4): 833.
[8] Lam N, EF Gad. Overturning of non-structural components in low-moderate seismicity regions [J]. Electronic Journal of Structural Engineering, 2008, 8(Special 1): 121-132.
[9] 杨维国, 胡卫中, 齐涛, 等. 地震作用下浮放物体运动状态研究[J]. 振动与冲击, 2021, 40(23): 247-253.
YANG Weiguo, HU Weizhong, QI Tao, et al. Study on motion state of floating object under earthquake action [J]. Journal of Vibration and Shock, 2021, 40(23): 247-253.
[10] 周乾, 闫维明, 纪金豹. 地震作用下浮放物体摇晃响应仿真分析[C]// 第十届全国冲击动力学学术会议论文摘要集. 2011.
ZHOU Qian, YAN Weiming, JI Jinbao. Simulation analysis of swaying Response of floating Object under Earthquake Action [C]//  Proceedings of the 10th National Conference on Impact Dynamics. 2011.
[11] 周乾, 闫维明, 纪金豹. 基于陈列柜边界条件的馆藏文物摇晃响应试验[J]. 土木工程与管理学报, 2011, 28(03): 401-406.
ZHOU Qian, YAN Weiming, JI Jinbao. Experimental study on shaking response of cultural relics based on display case boundary conditions [J]. Journal of civil engineering and management, 2011, 28(03): 401-406.
[12] 刘汉泉. 建筑内部浮放物品的地震易损性研究[D]. 中国地震局工程力学研究所, 2020.
LIU Hanquan. Research on seismic vulnerability of Floating Objects inside Buildings [D]. Institute of Engineering Mechanics, China Earthquake Administration, 2020.
[13] Housner G W. The behavior of inverted pendulum structures during earthquakes [J]. Bulletin of the seismological society of America, 1963, 53(2): 403-417.
[14] Scalia A, Sumbatyan M A. Slide rotation of rigid bodies subjected to a horizontal ground motion [J]. Earthquake engineering & structural dynamics, 1996, 25(10): 1139-1149.
[15] Belleri A, Torquati M, Riva P. Finite element modeling of rocking walls [C]// 4th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. 2013: 12-14.
[16] Kalliontzis D. Dynamic decay of motion of rocking concrete members [D]. Iowa State University, 2014.
[17] Kalliontzis D, Sritharan S. A finite element approach for modelling controlled rocking systems [C]// 2nd European Conference on Earthquake Engineering and Seismology. 2014.
[18] Nazari M, Sritharan S, Aaleti S. Single precast concrete rocking walls as earthquake force‐resisting elements [J]. Earthquake Engineering & Structural Dynamics, 2017, 46(5): 753-769.
[19] Kalliontzis D, Sritharan S. Characterizing dynamic decay of motion of free-standing rocking members [J]. Earthquake Spectra, 2018, 34(2): 843-866.

PDF(3169 KB)

334

Accesses

0

Citation

Detail

段落导航
相关文章

/