钢筋混凝土粘结滑移效应计算方法与应用

阮升1,2,郑山锁1,2,张艺欣3,董立国1,2,王卓涵4

振动与冲击 ›› 2022, Vol. 41 ›› Issue (24) : 159-166.

PDF(2576 KB)
PDF(2576 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (24) : 159-166.
论文

钢筋混凝土粘结滑移效应计算方法与应用

  • 阮升1,2,郑山锁1,2,张艺欣3,董立国1,2,王卓涵4
作者信息 +

A calculation method and application of bond-slip effect of reinforced concrete

  • RUAN Sheng1,2,ZHENG Shansuo1,2,ZHANG Yixin3,DONG Liguo1,2,WANG Zhuohan4
Author information +
文章历史 +

摘要

以钢筋混凝土(Reinforced Concrete, RC)结构中锚固区域的粘结滑移效应为研究对象,基于一致粘结滑移本构模型,根据微元法建立锚固区域控制方程,通过积分计算并考虑实际工程中的边界条件,解得钢筋应力—滑移关系解析模型,与既有拉拔试验数据对比,验证了该解析模型的可靠性。进而,基于OpenSEES有限元平台,将模型与零长度纤维截面单元嵌套,结合纤维梁柱单元,建立考虑钢筋粘结滑移效应的数值建模方法。通过与既有RC构件的拟静力试验及应用传统宏观本构的数值模型进行对比,从构件层面进一步对本文解析模型的可靠性进行验证。结果表明,本文提出的钢筋应力—滑移模型能较好的反映长锚固钢筋受拉时的滑移行为;应用本文钢筋应力—滑移模型的零长度纤维模型能较为准确地计算RC柱的滞回曲线,相较于应用传统宏观本构的数值模型,提高了RC柱刚度与强度及其退化规律的预测精度,且对于不同设计参数的RC构件,能够更加准确的表征不同加载状态下的钢筋滑移行为。
关键词:钢筋混凝土;粘结滑移;应力—滑移;零长度单元;OpenSEES

Abstract

The bond-slip effect in the anchored region of reinforced concrete (RC) structure is taken as the research object. Based on the uniform bond-slip constitutive model and the micro-element method, the governing equation of the anchored area is established, and the analytical model of stress-slip relationship of reinforcement is obtained by integral calculation and considering the boundary conditions in practical engineering. The reliability of the proposed model is verified by comparison with the existing pull-out test data. Furthermore, based on the OpenSEES finite element platform, the model in this paper is nested with a zero-length fiber cross-section element, and a fiber beam-column element is combined to establish a fiber numerical modeling method that considers the bond-slip effect of steel bar. By comparing with the quasi-static test of existing RC members and the numerical model of nested traditional macro-constitutive model, the reliability of the analytical model in this paper is further verified at the component level. The results show that the stress-slip model proposed in this paper can accurately reflect the slip behavior of long anchored reinforcement under tension. The zero-length fiber model using the proposed bar stress-slip model can accurately calculate the hysteresis curve of RC columns. Compared with the numerical model of nested traditional macro-constitutive model, the prediction accuracy of RC column stiffness, strength and the degradation law of them can be improved. Moreover, for RC members with different design parameters, the sliding behavior of reinforcement under different loading conditions can be characterized more accurately.
Key words: reinforced concrete; bond-slip; stress-slip; zero-length element; OpenSEES

关键词

钢筋混凝土;粘结滑移;应力&mdash / 滑移;零长度单元;OpenSEES

Key words

 reinforced concrete / bond-slip / stress-slip / zero-length element / OpenSEES

引用本文

导出引用
阮升1,2,郑山锁1,2,张艺欣3,董立国1,2,王卓涵4. 钢筋混凝土粘结滑移效应计算方法与应用[J]. 振动与冲击, 2022, 41(24): 159-166
RUAN Sheng1,2,ZHENG Shansuo1,2,ZHANG Yixin3,DONG Liguo1,2,WANG Zhuohan4. A calculation method and application of bond-slip effect of reinforced concrete[J]. Journal of Vibration and Shock, 2022, 41(24): 159-166

参考文献

[1] 王德斌, 李宏男. 不同加载条件下钢筋混凝土构件力学特性及影响规律研究 [J]. 振动与冲击, 2013, 32(05): 113-118.
Wang Debin, Li Hongnan. Mechanical behaviors and effects of reinforced concrete members under different loadings [J]. JOURNAL OF VIBRATION AND SHOCK, 2013, 32(05): 113-118.
[2] 张于晔, 魏红一, 袁万城. 钢纤维混凝土局部增强桥墩抗震性能试验研究 [J]. 振动与冲击,2012,31(21):102-107.
Zhang Yuye, Wei Hongyi, Yuan Wancheng. Tests for aseismic behavior of bridge piers with local steel fiber reinforced concrete [J]. JOURNAL OF VIBRATION AND SHOCK, 2012,31(21):102-107.
[3] 李徐, 钟铁毅, 夏禾. 尺寸效应对钢筋混凝土桥墩抗震性能影响的试验研究 [J]. 振动与冲击, 2014, 33(18): 126-132.
Li Xu, Zhong Tieyi, Xia He. Size effect on aseismic behavior of reinforced concrete columns [J]. JOURNAL OF VIBRATION AND SHOCK, 2014, 33(18): 126-132.
[4] Alsiwat J M, Saatcioglu M. Reinforcement anchorage slip under monotonic loading [J]. Journal of Structural Engineering, 1992, 118(9):2421-2438.
[5] Liang X, Sritharan S. An Investigation of bond-slip behavior of reinforcing steel subjected to inelastic strains [C]. Proceedings of the 10th National Conference in Earthquake Engineering, Earthquake Engineering Research Institute, Anchorage, Alaska, 2014.
[6] Cairns J. Bond and anchorage of embedded steel reinforcement in fib Model Code 2010[J]. Structural Concrete,2015,16(1).
[7] Guizani L, Chaallal O, Mousavi S S. Local Bond Stress-Slip Model for R/C Joints and Anchorages with Moderate Confinement [J]. Canadian Journal of Civil Engineering, 2016, 44(3): 201-211.
[8] Megalooikonomou K G, Tastani S P, Pantazopoulou S J. Effect of yield penetration on column plastic hinge length [J]. Engineering Structures, 2017, 156(FEB.1): 161-174.
[9] 郑山锁, 裴培, 张艺欣, 等. 钢筋混凝土粘结滑移研究综述 [J]. 材料导报, 32(23):159-168.
Zheng Shansuo, Pei Pei, Zhang Yixin, et al. Review of research on bond-slip of reinforced concrete [J]. Materials Reports, 32(23):159-168.
[10] Sezen H. Seismic behavior and modeling of reinforced concrete building columns [D]. Berkeley, USA: University of California, 2002.
[11] Murray J A, Hecht E, Sasani M. Modeling bar slip in nonductile reinforced concrete columns [J]. Journal of Structural Engineering, 2016, 142(10): 04016085.
[12] Ding R, Tao M X, Nie X, Mo Y L. Fiber beam-column model for diagonally reinforced concrete coupling beams incorporating shear and reinforcement slip effects [J]. Engineering Structures,2017,153.
[13] Kawashima K, Watanabe G, Hayakawa R. Seismic performance of RC bridge columns subjected to bilateral excitation [C]. Proceedings of 35th joint meeting, panel on wind and seismic effects, Tsukuba Science City, Japan, 2003.
[14] Lehman D E, Moehle J P. Seismic performance of well-confined concrete bridge columns [R]. No. PEER-1998/01, University of California-Berkeley, 2000.
[15] Schoettler M J, Restrepo J I, Guerrini G, et al. A full-scale, single-column bridge bent tested by shake-table excitation. [R]. Pacific Earthquake Engineering Research (PEER) Center, 2015, 02.
[16] Zhao J, Sritharan S. Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures [J]. ACI Structural Journal, 2007, 104(2): 133-141.
[17] Kwak H G , Kim J K . Implementation of bond-slip effect in analyses of RC frames under cyclic loads using layered section method [J]. Engineering Structures, 2006, 28(12):1715-1727.
[18] Sezen H, Setzler E J. Reinforcement slip in reinforced concrete columns [J]. ACI Structural Journal, 2008, 105(3): 280-289.
[19] 李磊, 王卓涵, 张艺欣, 等. 冻融损伤钢筋混凝土构件黏结滑移本构模型研究[J/OL].建筑结构学报,1-10[2021-03-25].https://doi.org/10.14006/j.jzjgxb.2019.0415.
Li Lei, Wang Zhuohan, Zhang Yixin, et al. Bond slip model adapted for reinforced concrete members subjected to freeze-thaw damage [J/OL]. Journal of Building Structures, 1-10 [2021-03-25].
[20] Lowes L N, Altoontash A. Modeling reinforced-concrete beam-column joints subjected to cyclic loading [J]. Journal of Structural Engineering, 2003, 12(12):1686-1697.
[21] Pan W H, Tao M X, Nie X, et al. Rebar Anchorage Slip Macromodel Considering Bond Stress Distribution: Monotonic Loading and Model Application [J]. Journal of Structural Engineering, 2018, 144(8): 04018097.
[22] Ghannoum W M, Moehle J P. Dynamic collapse analysis of a concrete frame sustaining column axial failures [J]. ACI Structural journal, 2012, 109(3): 403-412.
[23] Berry M P, Eberhard M O. Performance modeling strategies for modern reinforced concrete bridge [R]. No. PEER-2007/07, University of California, Berkeley, 2008.
[24] Altoontash A. Simulation and damage models for performance assessment of reinforced concrete beam-column joints [D]. Stanford university, 2004.
[25] Wu Y F, Zhao X M. Unified bond stress-slip model for reinforced concrete [J]. Journal of Structural Engineering, 2013, 139(11): 1951-1962.
[26] Menegotto M. Method of analysis for cyclically loaded RC plane frames including changes ingeometry and non-elastic behavior of elements undercombined normal force and bending [C]//Proceedings of IABSE symposium on resistance and ultimate deformability of structures acted on by well defined repeated loads, 1973: 15–22.
[27] Shima H, Chou L L, Okamura H. Bond characteristics in post-yield range of deformed bars [J]. Doboku Gakkai Ronbunshu, 1987, 1987(378): 213-220.
[28] Ueda T, Lin I, Hawkins N M. Beam bar anchorage in exterior column-beam connections [J]. ACI Journal Proceedings, 1986, 83(3): 412-422.
[29] Mazzoni S, McKenna F, Scott M H, et al. OpenSees command language manual [R]. Pacific Earthquake Engineering Research (PEER) Center, 2006, 264.
[30] Scott B D, Park R, Priestley M J N. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates [J]. ACI Journal Proceedings. 1982, 79(1): 13-27.
[31] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete [J]. Journal of structural engineering, 1988, 114(8): 1804-1826.
[32] Saatcioglu M, Ozcebe G. Response of reinforced concrete columns to simulated seismic loading [J]. ACI Structural Journal, 1989, 86(6): 3-12.
[33] Lynn A C, Moehle J P, Mabin S A, et al. Seismic evaluation of existing reinforced concrete building columns [J]. Earthquake Spectra, 1996, 12(4): 715-739.
[34] 杨天戈, 范国玺, 王也, 等. 快速加载下轴压比对RC梁柱节点抗震性能的影响 [J]. 振动与冲击, 2019, 38(11): 271-278.
Yang Tiange, Fan Guoxi, Wang Ye, et al. Effects of axial compression ratio on aseismic performance of RC beam-column joint under rapid loading [J]. JOURNAL OF VIBRATION AND SHOCK, 2019, 38(11): 271-278.
[35] 于建兵, 周莉萍, 郭正兴, 等. 部分高强筋预制混凝土框架节点抗震性能研究 [J]. 振动与冲击,2019,38(11):17-23.
Yu Jianbing, Zhou Liping, Guo Zhengxing, et al. Aseismic behavior of precast concrete frame joints with partial high strength tendons [J]. JOURNAL OF VIBRATION AND SHOCK, 2019,38(11):17-23.

PDF(2576 KB)

541

Accesses

0

Citation

Detail

段落导航
相关文章

/