压电悬臂梁具有较好的振动俘能特性,然而其复杂力电特性及模型相关研究的不充分性导致实际应用受到制约。鉴于此,本文开展复合压电水平悬臂梁振动俘能特性试验及模型研究。首先,基于电路和结构基础设计搭建压电悬臂梁振动能量转换电能的试验系统。试验结果显示,压电悬臂梁俘能系统能量转换能力受外部激励频率、内部电路负载以及结构设计配重等条件的影响,其机电转换特性复杂,电压/电流-应变关系曲线呈近似椭圆形,功率-应变关系曲线呈近似蝴蝶形,还观测到由于结构自身及其配重的重力效应导致特性曲线形状呈现偏置现象。然后,提出力电耦合数学模型用于复合压电水平悬臂梁系统俘能的力电特性描述,通过与试验数据比较,验证该模型不但可以精确预测振动回收的电能(功率),还可有效模拟电压/电流-应变和功率-应变的复杂力电特性,且对试验特性曲线存在的偏置现象也能较好的模拟。本文的试验和模型研究成果将对压电悬臂俘能系统在工程领域的进一步的工程应用提供必要基础理论。
Abstract
Piezoelectric cantilever beam harvester is the most popular type due to its simple structure and easy installation. However it is figured out to collect very low electric power resulting in very limited potential applications. In view of this, we carry out a series of studies on mechanical-electric energy conversion of a laminated composited PZT cantilever in terms of characteristic experiment and modeling. We set up the experiment of energy conversion based on a circuit and structural design. The test data reveals the harvesting capability is significantly affected by three factors that are external excitation, internal resistance load and tip mass. The test data also reveals the mechanical-electric relationship of the harvester demonstrating complicated characteristics, in which voltage/current-strain curves are oval-shaped and power-strain curves are butterfly-shaped. Furthermore, those curves demonstrate bias and even more obvious while tip mass gains more weight, which should attribute to gravity effect of the horizontal cantilever harvester. On the basis, a coupled electromechanical model is proposed by taking gravity effect in consideration to simulate the aforementioned electromechanical behavior of the cantilever harvester. Through comparison with the test data, the model is verified that it can not only precisely predict the harvested electric power, but also effectively describe complex characteristic and its bias deterioration aroused by gravity effect. Overall, the studies have an in-depth exploration of vibration-based energy conversion of PZT harvester. It is believed to have a promising application prospect in this kind of PZT harvesters.
Key words: Vibration-based energy harvesting; horizontal composite piezoelectric cantilever; coupled-mechanical-electric modeling; gravity effect; bias of characteristic curve
关键词
振动能量收集 /
复合压电悬臂水平梁 /
力电耦合建模 /
重力效应 /
特性曲线偏置
{{custom_keyword}} /
Key words
Vibration-based energy harvesting /
horizontal composite piezoelectric cantilever /
coupled-mechanical-electric modeling /
gravity effect /
bias of characteristic curve
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 袁江波, 谢涛, 单小彪,等. 压电俘能技术研究现状综述[J]. 振动与冲击, 2009, 28(10): 36-41.
Yuan J B, Xie T, Dan X B, et al. A review of current situation for piezoelectric energy harvesting [J]. Journal of Vibration and Shock, 2009, 28(10): 36-41.
[2] 沈辉. 基于压电材料的振动能量回收电路及其应用研究[D].南京航空航天大学, 2010.
Shen H. Investigations on the Vibration Energy Harvesting Circuits and Their Application Using Piezoelectric Materials [D]. Nanjing University of Aeronautics and Astronautics, 2010.
[3] 蒋树农, 郭少华, 李显方. 单压电片悬臂梁式压电俘能器效能分析[J]. 振动与冲击, 2012, 31(19): 97-101.
Jiang S N, Guo S H, Li X F. Performance analysis for a unimorph cantilever piezoelectric harvester [J]. Journal of Vibration and Shock, 2012, 31(19): 97-101.
[4] 陈兵, 石雨桐, 张利杰. 基于宽频-多模态的复合俘能器的解析模型与实验研究[J]. 振动与冲击, 2020, 39(13): 198-206.
Chen B, Shi Y T, Zhang L J. Analytical model and tests for a hybrid energy harvester based on broadband multi-mode [J]. Journal of Vibration and Shock, 2020, 39(13): 198-206.
[5] Aridogan U, Basdogan I, Erturk A. Analytical modeling and experimental validation of a structurally integrated piezoelectric energy harvester on a thin plate[J]. Smart Materials and Structures, 2014, 23(4):39-45.
[6] Fang H B, Liu J Q, Xu Z Y, et al. Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting[J]. Microelectronics Journal, 2006, 37(11):1280-1284.
[7] SHEN D, Park J H, Noh J H, et al. Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting [J]. Sensors and Actuators: A Physical, 2009, 154(1):103-108.
[8] 胡元太, 蒋树农, 薛欢. 压电俘能器结构及其力/电耦合作用分析[J]. 固体力学学报, 2010,31(5): 30-46.
Hu Y T, Jiang S N, Xue H. Analysis on the structures of piezoelectric harvesters and the corresponding electromechanical couplings [J]. Acta Mechanica Solida Sinica, 2010, 31(5): 30-46.
[9] 孙凯利, 王海峰, 李蒙等. 压电悬臂梁俘能器输出特性仿真分析[J]. 压电与声光, 2018, 40(4): 79-82.
Sun K L, Wang H F, Li M et al. Simulation Analysis of Output Characteristics of Piezoelectric Cantilever Beams Harvester [J]. Piezoelectrics & Acoustiooptics, 2018, 40(4): 79-82.
[10] Roundy S and Wright PK. A piezoelectric vibration based generator for wireless electronics [J]. Smart materials and structures. 2004, 13(1): 1131-1144.
[11] Sodano H A, Park G, Inman D J. Estimation of Electric Charge Output for Piezoelectric Energy Harvesting [J]. Strain, 2010, 40(2): 49-58.
[12] NOËL E. DUTOIT, Wardle B L, Kim S G . Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters [J]. Integrated Ferroelectrics, 2005, 71(1): 121-160.
[13] Erturk A, Inman D J. A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters [J]. Journal of Vibration and Acoustics, 2008, 130(4):041-043.
[14] Roundy S, Wright PK, Rabaey J, Energy Scavenging for Wireless Sensor Networks with Special Focus on Vibrations [M], Kluwer Academic Press, 2003:27-37.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}