低信噪比下多目标调制谱轴频自动检测算法

马凯,陈喆,王易川,程玉胜

振动与冲击 ›› 2022, Vol. 41 ›› Issue (24) : 19-26.

PDF(1394 KB)
PDF(1394 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (24) : 19-26.
论文

低信噪比下多目标调制谱轴频自动检测算法

  • 马凯,陈喆,王易川,程玉胜
作者信息 +

An automatic detection algorithm for multi-target modulation spectrum shaft frequency under low signal-to-noise ratio

  • MA Kai,CHEN Zhe,WANG Yichuan,CHENG Yusheng
Author information +
文章历史 +

摘要

针对低信噪比条件下,水声目标辐射噪声中多目标调制谱轴频检测较为困难的问题,提出一种联合蚁群算法与谐波库匹配算法的多目标调制谱轴频检测算法。算法利用排序截短法剔除调制谱中的趋势项,并提出一种基于蚁群算法的线谱提取算法,用于提取低信噪比下调制谱中的线谱,该算法根据线谱特征建立一种新的代价函数来替代传统蚁群算法中距离这一寻优标准,可实现低信噪比下线谱的自动提取。最后根据所提线谱建立谐波库,通过与谐波库匹配实现轴频的自动提取。仿真和海试数据验证表明,算法在低信噪比下可以较好的提取线谱,并自动提取多目标的轴频,效果较好。
关键词:低信噪比;线谱提取;轴频检测;多目标;调制谱

Abstract

Aiming at the problem of difficult detection of multi-target modulation spectrum shaft frequency in underwater acoustic target radiated noise under the condition of low signal-to-noise ratio, a multi-target modulation spectrum shaft frequency detection algorithm combining ant colony algorithm and harmonic library matching algorithm was proposed. The algorithm used the sorting truncation method to eliminate the trend items in the modulation spectrum, and proposed a line spectrum extraction algorithm based on the ant colony algorithm to extract the line spectrum in the modulation spectrum under low signal-to-noise ratio. The algorithm established a new cost function based on the characteristics of the line spectrum to replace the optimization criterion of distance in the traditional ant colony algorithm, which could realize the automatic extraction of the line spectrum with low signal-to-noise ratio. Finally, a harmonic library was established according to the proposed line spectrum, and the shaft frequency was automatically extracted by matching with the harmonic library. Simulation and sea trial data verification show that the algorithm can successfully extract line spectra under low signal-to-noise ratio, and automatically extract the shaft frequency of multiple targets, with satisfied results。
Key words: low signal-to-noise ratio; line spectrum extraction; shaft frequency detection; multiple targets; modulation spectrum

关键词

低信噪比 / 线谱提取 / 轴频检测 / 多目标 / 调制谱

Key words

low signal-to-noise ratio / line spectrum extraction / shaft frequency detection / multiple targets / modulation spectrum

引用本文

导出引用
马凯,陈喆,王易川,程玉胜. 低信噪比下多目标调制谱轴频自动检测算法[J]. 振动与冲击, 2022, 41(24): 19-26
MA Kai,CHEN Zhe,WANG Yichuan,CHENG Yusheng. An automatic detection algorithm for multi-target modulation spectrum shaft frequency under low signal-to-noise ratio[J]. Journal of Vibration and Shock, 2022, 41(24): 19-26

参考文献

[1] 牛  芳,惠  娟,赵安邦.干扰抑制门在线谱提取中的应用[J].振动与冲击,2019,38(23):253-258.
NIU Fang, HUI Juan, ZHAO An-bang. Application of interference suppression gate in line spectrum extraction [J]. Journal of Vibration and Shock, 2019,38(23):253-258.
[2] 方世良,杜栓平,罗昕炜,等. 水声目标特征分析与识别技术[J]. 中国科学院院刊,2019,34(3):297-305.
FANG Shi-liang, DU Shuan-ping, LUO Xin-wei, et al. Development of Underwater Acoustic Target Feature Analysis and Recognition Technology [J]. Bulletin of Chinese Academy of Sciences, 2019, 34(3): 297-305.
[3] 韩  雪,朴胜春,付金山. 舰船辐射噪声听觉节奏的时变响度特征提取[J]. 哈尔滨工程大学学报,2020,41(04): 487-492.
HAN Xue, PIAO Sheng-chun, FU Jin-shan. Time-varying loudness feature extraction of the audition rhythm of ship radiation noise [J]. Journal of Harbin Engineering University, 2020, 41(04): 487-492.
[4]  LIU D D,CHENG W D, WEN W G,et al. An Online Bearing Fault Diagnosis Technique via Improved Demodulation Spectrum Analysis Under Variable Speed Conditions [J]. IEEE Systems Journal,2019,14(2):2323-2334.
[5] 程玉胜,邱家兴,刘  振,等. 水声被动目标识别技术挑战与展望[J]. 应用声学,2019,38(04): 653-659.
CHENG Yu-sheng, QIU Jia-xing, LIU Zhen, et al. Challenges and prospects of underwater acoustic passive target recognition technology [J]. Journal of Applied Acoustics, 2019, 38(04): 653-659.
[6] 黄  苒,安  良. 舰船辐射噪声分频段调制特征仿真方法研究[J]. 声学与电子工程,2020,(04):21-26.
HUANG Ran, AN Liang. Research on simulation method of frequency division modulation characteristics of ship radiated noise [J]. Acoustics and Electronics Engineering, 2020, (04): 21-26.
[7] 陈敬军,陆佶人. 低信噪比下的螺旋桨轴频估计方法[J]. 信号处理,2004,20(5):461-464+440.
CHEN Jing-jun, LU Zhe-ren. The method of estimating propeller frequency at low signal to noise ratio [J]. Signal processing, 2004, 20(5): 461-464+440.
[8] 殷敬伟,惠俊英,姚直象,等. 基于DEMON线谱的轴频提取方法研究[J]. 应用声学,2005,24(6):369-374.
YIN Jing-wei, HUI Jun-ying, YAO Zhi-xiang, et al. Extraction of shaft frequency based on the DEMON lin spectrum [J]. Applied acoustics, 2005, 24(6): 369-374.
[9]  Martino J,Haton J P,Laporte A. Lofargram line tracking by multistage decision process [C]// Acoustics,Speech,and Signal Processing.USA:IEEE.2002, 2002,26(1):29-41.
[10] 李  山,王德俊,王海斌. 一种基于线谱特征函数提取LOFAR图线谱的方法[J]. 声学技术,2016,35 (4):373-377.
LI Shan, WANG Jun-de, WANG Haibin. An approach to lofargram spectrum line detection based on the spectrum line feature function [J]. Technical Acoustics, 2016, 35 (4): 373-377.
[11]  M Dorigo,V Maniezzo,A Colorni. Ant system: optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2002,26(1):29-41.
[12] 张  毅,权  浩,文家富. 基于独狼蚁群混合算法的移动机器人路径规划[J]. 华中科技大学学报(自然科学版),2020,48(01):127-132.
ZHANG Yi, QUAN Hao, WEN Jiafu. Mobile robot path planning based on the wolf ant colony hybrid algorithm [J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2020,48(01):127-132.
[13] 李春祥,丁晓达,叶继红. 基于混合蚁群和粒子群优化LSSVM的脉动风速预测[J].振动与冲击,2016,35(21):131-136.
LI Chun-xiang, DING Xiao-da, YE Ji-hong. Fluctuating wind velocity forecasting based on LSSVM with hybrid ACO & PSO [J]. Journal of Vibration and Shock, 2016,35(21):131-136.
[14]  Y Xu,S Bao. Energy consumption fuzzy control of robot motion path based on ant colony optimization [J]. Chin. J.Constr.Mach,2020,18(2):113-118.
[15] 金  浩, 刘维宁. 蚁群算法耦合LS-DYNA梯式轨枕轨道动力特性优化[J]. 振动与冲击,2013,32(2):24-28.
JIN Hao, LIU Wei-ning. Optimization of laddertype track using ant colony algorithm coupled with LS-DYNA[J]. Journal of Vibration and Shock, 2013,32(2):24-28.
[16] 马向华,张  谦. 改进蚁群算法在机器人路径规划上的研究[J]. 计算机工程与应用,2021,57(05):210-215.
MA Xiang-hua, ZHANG Qian. Research on Improved Ant Colony Algorithm in Robots Path Planning [J]. Computer Engineering and Applications, 2021,57(05):210-215.
[17] 雷超帆,赵华东,江  南. 融合粒子群与蚁群算法的机器人路径规划[J]. 重庆理工大学学报(自然科学),2020,34(01):235-241.
LEI Chao-fan, ZHAO Hua-dong, JINAG Nan. Robot Path Planning Based on Particle Swarm Optimization and Ant Colony Fusion Algorithm [J]. Journal of Chongqing University of Technology(Natural Science), 2020,34(01):235-241.
[18] 刘永建,曾国辉,黄  勃. 改进蚁群优化算法的移动机器人路径规划研究[J]. 传感器与微系统,2020,39(04):56-58+62.
LIU Yong-jian, ZENG Guo-hui, HUANG Bo. Research on path planning of mobile robot based on improved ant colony optimization algorithm [J]. Transducer and Microsystem Technologies, 2020, 39(04): 56-58+62.
[19]白敬贤,高天德,夏润鹏.基于DEMON谱信息提取算法的目标识别方法研究[J].声学技术,2017,36(01):88-92.
BAI Jing-xian, GAO Tian-de, XIA Run-peng. Target recognition based on the information extraction algorithm of DEMON spectrum[J]. Technical Acoustics, 2017, 36(01): 88-92.
[20] 鲍雪山. 被动目标DEMON检测方法研究及处理系统方案设计[D]. 哈尔滨:哈尔滨工程大学,2005.
BAO Xue-shan. The Method Research of Passive Target Detection Using DEMON spectrum and the Project design of Processing System [D]. Haerbin:Harbin Engineering University,2005. 

PDF(1394 KB)

298

Accesses

0

Citation

Detail

段落导航
相关文章

/