基于加权遗传算法的旋转机械不平衡振动溯源定位方法研究

康敬欣1,石瑞玉1,2,潘鑫1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (24) : 256-261.

PDF(1057 KB)
PDF(1057 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (24) : 256-261.
论文

基于加权遗传算法的旋转机械不平衡振动溯源定位方法研究

  • 康敬欣1,石瑞玉1,2,潘鑫1,2
作者信息 +

Research on unbalance vibration traceability and positioning method of rotating machinery based on the weighted genetic algorithm

  • KANG Jingxin1, SHI Ruiyu1,2, PAN Xin1,2
Author information +
文章历史 +

摘要

针对高端旋转机械多平面多转速下的不平衡振动定位问题,提出一种基于加权遗传算法的转子不平衡溯源定位方法,并开发了一套不平衡溯源计算软件。该方法在遗传算法的基础上进行改进,增加了针对各测点各转速下振动的赋权过程,并分别在某双跨转子有限元模型以及某模拟发电机实验台上,通过将该方法与最小二乘法和遗传算法进行对比,进一步验证该改进方法的不平衡量溯源效果。仿真结果表明,该技术针对高权重测点处的溯源精度高于其余两种算法。在模拟发电机转子实验台上,应用该技术开展多平面多转速不平衡溯源定位实验。实验结果表明,基于加权遗传算法的溯源结果进行平衡后,高权重测点振幅降幅超过80%,降幅较其余两种算法有明显提升。综合仿真与实验结果,该方法较最小二乘法与遗传算法更有针对性及目的性。

Abstract

Aiming at the unbalance of rotating machinery under multi-plane and multi-speed, a new technology of rotor unbalance traceability and positioning based on weighted genetic algorithm is proposed, and a calculation software of unbalance traceability is developed. The technology is improved on the basis of genetic algorithm, process of weighting for vibration at each measuring point and rotating speed is added. The source of imbalance of a double-span rotor finite element model and a generator test bench is traced using least squares method and genetic algorithm, respectively. The traceability accuracy of this technology for high-weighted measuring points is higher than that of the other two methods. The technology is used to carry out the experiments of unbalance traceability and positioning of generator test bench in case of multi-plane and multi-speed. The amplitude of the high-weight measurement points decreased by more than 80% after balancing according to the results, which is significantly higher than the other two algorithms. Based on simulation and experimental results, the new technology is more targeted and purposeful than the least square method and genetic algorithm.

关键词

多转速 / 不平衡溯源 / 加权遗传算法 / 振动抑制 / 转子动平衡

Key words

multiple rotational speeds / unbalance traceability / weighted genetic algorithm / vibration suppression / rotor dynamic balancing

引用本文

导出引用
康敬欣1,石瑞玉1,2,潘鑫1,2. 基于加权遗传算法的旋转机械不平衡振动溯源定位方法研究[J]. 振动与冲击, 2022, 41(24): 256-261
KANG Jingxin1, SHI Ruiyu1,2, PAN Xin1,2. Research on unbalance vibration traceability and positioning method of rotating machinery based on the weighted genetic algorithm[J]. Journal of Vibration and Shock, 2022, 41(24): 256-261

参考文献

[1] 黄金平, 任兴民, 邓旺群. 利用升速响应振幅进行柔性转子的模态平衡 [J]. 机械工程学报, 2010, 46(5): 55-62
   HUANG Jinping, REN Xingmin, DENG Wangqun. Novel modal balancing of flexible rotor by using the run-up amplitude [J]. Journal of Mechanical and Engineering, 2010, 46(5): 55-62
[2] LI X F, ZHENG L X, LIU Z X. Balancing of flexible rotors without trial weights based on finite element modal analysis [J]. Journal of Vibration and Control, 2013, 19(3): 461-470
[3] Y A KHULIEF, M A MOHIUDDIN, M El-GEBEILY, HYEONG JOON AHN. A new method for field-balancing of high-speed flexible rotors without trial weights [J]. International Journal of Rotating Machinery,2014,2014
[4] ZHAO S B, REN X M, DENG W Q, et al. A novel transient balancing technology of the rotor system based on multi modal analysis and feature points selection [J]. Journal of Sound and Vibration, 2021(510): 116321
[5] C. UNTAROIU, P. ALLAIRE. A generalized minmax influence coefficient method for flexible rotor balancing [P]. ASME International Mechanical Engineering Congress and Exposition, Orlando, Florida, USA, 2005
[6] 章云, 梅雪松. 机床柔性主轴转子低速无试重动平衡方法研究 [J].西安交通大学学报, 2016, 50(4): 89-93
   ZHANG Yun, MEI Xuesong. A low-speed balancing method for the flexible rotor of mechine tool spindles without trial weights [J]. Journal of Xi’an JiaoTong University, 2016, 50(4): 89-93
[7] 岳聪, 任兴民, 邓旺群, 等. 基于升速响应信息柔性转子系统的多阶多平面瞬态动平衡方法 [J].航空动力学报, 2013, 28(11): 2593-2599
   YUE Cong, REN Xingmin, DENG Wangqun, et al. Multi-plain and multi-critical transient dynamic balance method based on rising speed response information of flexible rotor system [J]. Journal of Aerospace Power, 2013, 28(11): 2593-2599
[8] 王维民, 高金吉, 江志农, 等. 旋转机械无试重现场动平衡原理与应用 [J]. 振动与冲击, 2010, 29(2): 212-215+232
   WANG Weimin, GAO Jinji, JIANG Zhinong, et al. Principle and application of no trial weight field balancing for a rotating machinery [J]. Journal of Vibration and Shock, 2010, 29(2): 212-215+232
[9] 宾光富, 周伟, 王维民, 等. 基于动力学响应分析的透平机械多转子轴系虚拟动平衡研究 [J]. 振动与冲击, 2017, 36(18): 8-12+28
   BIN Guangfu, ZHOU Wei, WANG Weimin, et al. Virtual dynamic balancing for turbomachine shafting with multi-rotor based on dynamic response analysis [J]. Journal of Vibration and Shock, 2017, 36(18): 8-12+28
[10]YAO J F, YANG F Y, SU Y F, et al. Balancing optimization of a multiple speeds flexible rotor [J]. Journal of Sound and Vibration, 2020(480): 115405
[11]唐云冰, 罗贵火, 章景璇, 等. 非线性支承转子的动平衡[J].航空动力学报, 2005(4): 600-605
   TANG Yunbing, LUO Guihuo, ZHANG Jingxuan, et al. Rotor
balancing taking nonlinear stiffness characteristics into account [J]. Journal of Aerospace Power, 2005(4): 600-605
[12]徐宾刚, 屈梁生, 孙瑞祥. 基于影响系数法的柔性转子无试重平衡法研究 [J]. 西安交通大学学报, 2000(7): 63-67
   XU Bingang, QU Liangsheng, Sun Ruixiang. Balancing of flexible rotors without test weights [J]. Journal of Xi’an JiaoTong University, 2000(7): 63-67
[13]邱海, 张海军, 屈梁生, 等. 遗传算法在柔性转子动平衡中的应用 [J]. 中国机械工程, 2002(5): 60-63+6
   QIU Hai, ZHANG Haijun, QU Liangsheng, et al. The application of genetic algorithm in flexible rotor dynamic balancing [J]. China Mechanical Engineering, 2002(5): 60-63+6
[14]邱海, 屈梁生, 张海军, 等. 神经网络在转子动平衡中应用的几个关键问题 [J]. 机械工程学报, 2001(1): 88-91+112
   QIU Hai, QU Liangsheng, ZHANG Haijun, et al. Some key problems of neural network applied in rotor balancing [J]. Journal of Mechanical and Engineering, 2001(1): 88-91+112
[15]傅超, 任兴民, 杨永锋, 等. 基于加速不平衡响应的柔性转子无试重动平衡 [J]. 西北工业大学学报, 2017, 35(5): 898-904
   FU Chao, REN Xingmin, YANG Yongfeng, et al. Balancing of flexible rotors based on accelerating unbalance response without trial weights [J]. Journal of Northwestern Polytechnical University, 2017, 35(5): 898-904
[16]王星星, 吴贞焕, 杨国安, 等. 基于改进粒子群算法的最小二乘影响系数法的理论及实验研究 [J]. 振动与冲击, 2013, 32(8): 100-104
   WANG Xingxing, WU Zhenhuan, YANG Guoan, et al. Theory and tests for least square influence coefficient method based on an improved particle swarm optimization algorithm [J]. Journal of Vibration and Shock, 2013, 32(8): 100-104
[17]Zhong S, Li L Q, Chen H Z, et al. A novel balancing method for rotor using unsupervised deep learning [J]. Shock and Vibration, 2021, 2021
[18]余胜威. MATLAB优化算法案例分析与应用[M]. 北京: 清华大学出版社. 2014

PDF(1057 KB)

379

Accesses

0

Citation

Detail

段落导航
相关文章

/