具有非线性能量阱的弹性边界约束轴向载荷梁结构动力学行为研究

赵雨皓1,杜敬涛1,张树奇2,刘杨1,陈依林1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (24) : 262-269.

PDF(1942 KB)
PDF(1942 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (24) : 262-269.
论文

具有非线性能量阱的弹性边界约束轴向载荷梁结构动力学行为研究

  • 赵雨皓1,杜敬涛1,张树奇2,刘杨1,陈依林1
作者信息 +

A study of dynamic behavior of axially loaded beams with nonlinear energy sink and elastic boundary restraints

  • ZHAO Yuhao1, DU Jingtao1, ZHANG Shuqi2, LIU Yang1, CHEN Yilin1
Author information +
文章历史 +

摘要

近年来,非线性能量阱作为一种高效的被动控制手段受到国内外学者广泛关注。本文采用Galerkin截断法(GTM)预报弹性边界约束轴向载荷梁结构动力学响应,研究非线性能量阱对梁结构振动行为影响规律。在Galerkin截断法中,选取具有线性边界条件轴向载荷Euler- Bernoulli梁模态函数作为权函数和试函数,之后利用Galerkin条件建立梁结构振动系统的残差方程,结合四阶龙格-库塔算法对上述残差方程进行求解。采用谐波平衡法对Galerkin截断法所得结果进行验证并研究了Galerkin截断法截断数对结果稳定性的影响。在此基础上,研究外部激励位置、非线性能量阱参数对该梁结构系统动力学响应、减振性能的影响规律。结果表明,外部激励位置与非线性能量阱参数对梁结构动力学响应影响显著。适当的非线性刚度、阻尼参数能够有效抑制梁结构端点处的振动响应幅值。

Abstract

As an efficient passive control means, the nonlinear energy sink has received extensive attention from various scholars all over the word in recent years. In this work, the Galerkin truncated method (GTM) is employed to predict the system dynamics of an axially loaded beam with elastic boundary restraints, and the influence of nonlinear energy sink on vibration behavior of such beam structure is investigated. In Galerkin truncated method, mode functions of the axially loaded Euler-Bernoulli beam with linear boundary conditions are selected as the trail and weight functions. The Galerkin condition is used to establish the residual equations of beam structure. The fourth-order Runge-Kutta method is utilized to solve the residual equations directly. Harmonic balance method is also used to verify the results obtained by GTM, and the influence of truncated number on the stability of the results is also studied. Based on this, the influence of excitation position and nonlinear energy sink on dynamic behavior and vibration suppression of beam structure is explored. Results show that the excitation position as well as parameters of the nonlinear energy sink have significant influence on dynamic behavior of the beam structure. The appropriate nonlinear stiffness and damping parameters can effectively suppress the vibration response amplitude at the both ends of beam structure.

关键词

梁结构振动 / 非线性能量阱 / 轴向载荷 / 弹性边界约束 / Galerkin截断法

Key words

Beam structural vibration / Nonlinear energy sink / Axially load / Elastic boundary restraint / Galerkin truncated term

引用本文

导出引用
赵雨皓1,杜敬涛1,张树奇2,刘杨1,陈依林1. 具有非线性能量阱的弹性边界约束轴向载荷梁结构动力学行为研究[J]. 振动与冲击, 2022, 41(24): 262-269
ZHAO Yuhao1, DU Jingtao1, ZHANG Shuqi2, LIU Yang1, CHEN Yilin1. A study of dynamic behavior of axially loaded beams with nonlinear energy sink and elastic boundary restraints[J]. Journal of Vibration and Shock, 2022, 41(24): 262-269

参考文献

[1] M.J. Maurizi, D.V. Bambill. Free vibrations of clamped-clamped beam with an intermediate elastic support[J]. Journal of Sound and Vibration, 1987, 119: 173-176.
[2] C.K. Rao. Frequency analysis of clamped-clamped uniform beams with intermediate elastic support[J]. Journal of Sound and Vibration, 1989, 133: 502-509.
[3] M. Gürgöze, K. Özgür, H. Erol. On the eigenfrequencies of a cantilevered beam with a tip mass and in-span support[J]. Computers and Structures, 1995, 56: 85-92.
[4] K.H. Kang, K.J. Kim. Modal properties of beams and plates on resilient supports with rotational and translational complex stiffness[J]. Journal of Sound and Vibration, 1996, 190(2): 207-220.
[5] J.T.S. Wang, C.C. Lin. Dynamic analysis of generally supported beams using Fourier series[J]. Journal of Sound and Vibration, 1996, 196: 285-293.
[6] Z.J. Fan, J.H. Lee, K.H. Kang, K.J. Kim. The forced vibration of a beam with viscoelastic boundary supports[J]. Journal of Sound and Vibration, 1998, 210(5): 673-682.
[7] H.K. Kim, M.S. Kim. Vibration of beams with generally restrained boundary conditions using Fourier series[J]. Journal of Sound and Vibration, 2001, 245(5): 771-784.
[8] W.L. Li. Free vibrations of beams with general boundary conditions[J]. Journal of Sound and Vibration, 2000, 237(4): 709-725.
[9] 周渤,石先杰.连续多跨梁结构振动特性分析[J].机械设计与制造,2017(08):43-46.
B. Zhou, X.J. Huang. Vibration analysis of multi-span beam system[J]. Machinery Design and Manufacture, 2017, 08: 43-46.
[10] 鲍四元,曹津瑞.具有任意弹性边界单跨梁结构的振动特性分析[J].苏州科技大学学报(自然科学版),2019,36(01):16-20+47.
S.Y. Bao, J.R. Cao. Analysis of vibration characteristics of single-span beam structure with arbitrary elastic boundary conditions[J]. Journal of Suzhou University of Science and Technology (Natural Science), 2019, 36(01): 16-20+47.
[11] 肖伟,霍瑞东,李海超,高晟耀,庞福振.改进傅里叶方法在梁结构振动特性分析中的应用[J].噪声与振动控制,2019,39(01):10-15.
Xiao W, Huo R D, Li H C, Gao S Y, Pang F Z. Application of improved Fourier series method in vibration analysis of beam structures[J]. Noise and Vibration Control, 2019, 39(01):10-15.
[12] D.S. Xu, J.T. Du, Y.H. Zhao. Flexural vibration and power flow analyses of axially loaded beams with general boundary and non-uniform elastic foundations[J]. Advances in Mechanical Engineering, 2020, 12(5): 1-14.
[13] 赵雨皓,杜敬涛,许得水.轴向载荷条件下弹性边界约束梁结构振动特性分析[J].振动与冲击,2020,39(15):109-117.
Y.H. Zhao, J.T. Du, D.S. Xu. Vibration characteristics analysis for an axially loaded beam with elastic boundary restraints[J]. Journal of Vibration and Shock, 2020, 39(15): 109-117.
[14] A.F. Vakakis. Inducing passive nonlinear energy sinks in vibrating systems[J]. Journal of Vibration and Acoustic, 2001, 123(3): 324-332.
[15] F. Georgiades, A.F. Vakakis. Dynamics of a linear beam with an attached local nonlinear energy sink[J]. Communication in Nonlinear Science and Numerical Simulation, 2007, 12: 643–651.
[16] F.S. Samani, F. Pellicano. Vibration reduction on beams subjected to moving loads using linear and nonlinear dynamic absorbers[J]. Journal of Sound and Vibration, 2009, 325: 742-754.
[17] Z.N. Ahmadabadi, S.E. Khadem. Nonlinear vibration control of a cantilever beam by a nonlinear energy sink[J]. Mechanism and Machine Theory, 2012, 50: 134-149.
[18] Z.N. Ahmadabadi, S.E. Khadem. Nonlinear vibration control and energy harvesting of a beam using a nonlinear energy sink and a piezoelectric device[J] Journal of Sound and Vibration, 2014, 333: 4444–4457.
[19] M. Kani, S.E. Khadem, M.H. Pashaei, M. Dardel. Vibration control of a nonlinear beam with a nonlinear energy sink[J]. Nonlinear Dynamic, 2015, 83: 1–22.
[20] M. Kani, S.E. Khadem, M.H. Pashaei, M. Dardel. Design and performance analysis of a nonlinear energy sink attached to a beam with different support conditions[J]. Journal of Mechanical Engineering Science, 2015, 230(4): 527-542.
[21] Y.W. Zhang, S. Hou, K.F. Xu, T.Z. Yang, L.Q. Chen. Forced vibration control of an axially moving beam with an attached nonlinear energy sink[J]. Acta Mechanica Solida Sinica, 2017, 30: 674-682.
[22] X. Fang, J.H. Wen, J.F. Yin, D.L. Yu. Highly efficient continuous bistable nonlinear energy sink composed of a cantilever beam with partial constrained layer damping[J]. Nonlinear Dynamic, 2017, 87: 2677-2695.
[23] 李响. 非线性振动抑制和压电采集能量一体化研究[D].上海大学,2017.
X. Li. Investigation on integration of nonlinear vibration suppression and piezoelectric energy harvesting[D]. Shanghai University, 2017.
[24] 王闯. 非线性梁非线性能量阱振动控制与能量采集[D].沈阳航空航天大学,2018.
C. Wang. Vibration control and energy harvesting of nonlinear beam with nonlinear energy sink[D]. Shenyang Aerospace University, 2018.
[25] 贺腾. 非线性能量阱梁结构的振动抑制[D].沈阳航空航天大学,2018.
T. He. Vibration control and energy harvesting of nonlinear beam with nonlinear energy sink[D]. Shenyang Aerospace University, 2018.
[26] 鲁正,王自欣,吕西林.非线性能量阱技术研究综述[J].振动与冲击,2020,39(04):1-16+26.
Z. Lu, Z.X. Wang, X.L. Lv. A review on nonlinear energy sink technology[J]. Journal of Vibration and Shock, 2020, 39(04): 1-16+26.
[27] 姚永玉,宋伟志,李彬,陈智勇,张晨骏,高强.基于能量耗散的NES振动抑制分析[J].中国工程机械学报,2020,18(05):384-389.
Y.Y. Yao, W.Z. Song, B. Li, Z.Y. Chen, C.J. Zhang, Q. Gao. Analysis of vibration suppression of NES based on energy dissipation[J]. Chinese Journal of Construction Machinery, 2020, 18(05): 384-389.
[28] Z. Zhang, H. Ding, Y.W. Zhang, L.Q. Chen. Vibration suppression of an elastic beam with boundary inerter-enhanced nonlinear energy sinks[J]. Acta Mechanica Solida Sinica, 2021, 37(3): 387-401.

PDF(1942 KB)

302

Accesses

0

Citation

Detail

段落导航
相关文章

/