利用不同振动加工对FFF薄板动力学特性的影响

姜世杰1,2,孙明宇1,战阳3,李常有1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (24) : 287-292.

PDF(1178 KB)
PDF(1178 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (24) : 287-292.
论文

利用不同振动加工对FFF薄板动力学特性的影响

  • 姜世杰1,2,孙明宇1,战阳3,李常有1
作者信息 +

The influence of using different vibration machining on the dynamic characteristics of FFF plates

  • JIANG Shijie1,2, SUN Mingyu1, ZHAN Yang3, LI Changyou1
Author information +
文章历史 +

摘要

熔丝成型(Fused filament fabrication, FFF)是当今使用最为广泛的增材制造技术之一,能够直接生产出几乎任意复杂形状的零部件。利用振动进行FFF加工,并研究了不同振动(不同频率或幅值)对FFF薄板动力学特性的影响规律。首先,将普通FFF设备改装成振动式FFF设备;然后制备了利用不同振动加工的薄板样件,并完成锤击法模态实验,确定了样件的固有特性和振动响应;最后,对比分析实验结果,阐明了利用不同振动加工对FFF薄板动力学特性的影响规律。实验结果表明,利用的振动的频率或幅值增大时,样件的固有频率和振动响应会随之降低,而模态振型保持不变。

Abstract

Fused filament fabrication (FFF) has been one of the most widely used additive manufacturing technologies, it can directly manufacture parts with almost any complex geometry. In this paper, different vibration (with different frequency or amplitude) was used in FFF process, and their influencing rule on the dynamic characteristics of FFF thin plates was studied. Firstly, an ordinary FFF equipment was refitted into a vibrating one; The samples processed with different vibrations were then prepared, and hammering modal tests were performed to confirm their inherent characteristic and vibration response; Finally, the influencing rule of different utilized vibrations on the dynamic characteristic of FFF plates was clarified through the comparison between the experimental results. It is shown that when the frequency or amplitude of the vibration increases, the natural frequency and vibration response of the samples will decrease, while the mode shape will remain unchanged.

关键词

熔丝成型 / 利用振动 / 模态实验 / 固有特性 / 振动响应

Key words

Fused filament fabrication / use vibration / modal tests / inherent characteristic / vibration response

引用本文

导出引用
姜世杰1,2,孙明宇1,战阳3,李常有1. 利用不同振动加工对FFF薄板动力学特性的影响[J]. 振动与冲击, 2022, 41(24): 287-292
JIANG Shijie1,2, SUN Mingyu1, ZHAN Yang3, LI Changyou1. The influence of using different vibration machining on the dynamic characteristics of FFF plates[J]. Journal of Vibration and Shock, 2022, 41(24): 287-292

参考文献

[1] Lee K-M, Park H, Kim J, et al. Fabrication of a superhydrophobic surface using a fused deposition modeling (FDM) 3D printer with poly lactic acid (PLA) filament and dip coating with silica nanoparticles[J]. Applied Surface Science, 2019, 467-468: 979-991.
[2] Huang S H, Liu P, Mokasdar A, et al. Additive manufacturing and its societal impact: a literature review[J]. The International Journal of Advanced Manufacturing Technology, 2012, 67(5-8): 1191-1203.
[3] Goulas A, Zhang S, Mcghee J R, et al. Fused filament fabrication of functionally graded polymer composites with variable relative permittivity for microwave devices[J]. Materials & Design, 2020, 193:1-9.
[4] Gao X, Qi S, Kuang X, et al. Fused filament fabrication of polymer materials: A review of interlayer bond[J]. Additive Manufacturing, 2021, 37: 101658.
[5] 姜世杰, Siyajeu Y, 孙宁宁等. 振动利用对FDM薄板机械性能的影响研究[J], 振动与冲击, 2019, 38(9): 22-26.
(Jiang S, Siyajeu Y, Sun N, et al. Effects of vibration application on mechanical performances of FDM sheets[J]. Journal of Vibration and Shock, 2019, 38(9): 22-26)
[6] Boschetto A, Bottini L. Design for manufacturing of surfaces to improve accuracy in Fused Deposition Modeling[J]. Robotics and Computer-Integrated Manufacturing, 2016, 37: 103-114.
[7] Daver F, Lee K P M, Brandt M, et al. Cork–PLA composite filaments for fused deposition modelling[J]. Composites Science and Technology, 2018, 168: 230-237.
[8] Levy G N, Schindel R, Kruth J P. Rapid Manufacturing and Rapid Tooling with Layer Manufacturing (Lm) Technologies, State of the Art and Future Perspectives[J]. CIRP Annals, 2003, 52(2): 589-609.
[9] Rankouhi B, Javadpour S, Delfanian F, et al. Failure Analysis and Mechanical Characterization of 3D Printed ABS With Respect to Layer Thickness and Orientation[J]. Journal of Failure Analysis and Prevention, 2016, 16(3): 467-481.
[10] Yadav D, Chhabra D, Kumar Garg R, et al. Optimization of FDM 3D printing process parameters for multi-material using artificial neural network[J]. Materials Today: Proceedings, 2020, 21: 1583-1591.
[11] Wu W, Geng P, Li G, et al. Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS[J]. Materials (Basel), 2015, 8(9): 5834-5846.
[12] Arivazhagan A, Masood S H. Dynamic Mechanical Properties of ABS Material Processed by Fused Deposition Modelling[J]. International Journal of Engineering Research and Applications (IJERA), 2012, 2(3): 2009-2014.
[13] Pu J, Mcilroy C, Jones A, et al. Understanding mechanical properties in fused filament fabrication of polyether ether ketone[J]. Additive Manufacturing, 2021, 37: 101673.
[14] Mohamed O A, Masood S H, Bhowmik J L. Investigation of dynamic elastic deformation of parts processed by fused deposition modeling additive manufacturing[J]. Advances in Production Engineering & Management, 2016, 11(3): 227-238.
[15] Mohamed O A, Masood S H, Bhowmik J L, et al. Effect of Process Parameters on Dynamic Mechanical Performance of FDM PC/ABS Printed Parts Through Design of Experiment[J]. Journal of Materials Engineering and Performance, 2016, 25(7): 2922-2935.
[16] Colón Quintana J L, Redmann A, Mazzei Capote G A, et al. Viscoelastic properties of fused filament fabrication parts[J]. Additive Manufacturing, 2019, 28: 704-710.
[17] Jiang S, Siyajeu Y, Shi Y, et al. Improving the forming quality of fused filament fabrication parts by applied vibration[J]. Rapid Prototyping Journal, 2020, 26(1): 202-212.
[18] 姜世杰, Siyajeu Y, 史银芳等. 振动利用对FDM薄板动力学性能的影响研究[J]. 振动与冲击, 2019, 38(16): 1-6.
(Jiang S, Siyajeu Y, Shi Y, et al. Experimental investigation on the effect of utilizing vibration on the dynamic property of FDM plates[J]. Journal of Vibration and Shock, 2019, 38(9): 1-6)

PDF(1178 KB)

225

Accesses

0

Citation

Detail

段落导航
相关文章

/