螺栓连接结合面的接触特性是影响机械系统动静态特性的关键。当结合面处于振动疲劳状态时,会导致阻尼增大和共振频率减小,因此建立精确的栓接结合面接触模型对研究整个机床的动态特性有着十分重要的意义。结合Greenwood和Williamson给出的塑性指数表达式、统计学的粗糙度参数和分形参数,建立了与微凸体频率序数相关的塑性指数模型,从而根据塑性指数得到微凸体弹性-弹塑性-塑性变形的临界频率序数,并基于赫兹接触理论,通过对不同频率区间内微凸体的积分得到整个结合面的接触载荷和接触刚度。最后,通过有限元仿真与实验相结合共同验证了理论模型的正确性,证明上述理论模型具有较强的工程应用价值。
Abstract
The contact characteristics of the joint surface of the bolt connection is the key to affect the dynamic and static characteristics of the mechanical system. When the joint surface is in the vibration fatigue state, it will lead to an increase in damping and a decrease in resonance frequency. Therefore, it is very important to establish an accurate prediction model of bolted joint surface for studying the dynamic characteristics of the entire machine tool. This paper combines the plastic exponential expression, statistical roughness parameter and fractal parameter given by Greenwood and Williamson, and establishes a plastic exponential model related to the frequency order of microconvex body, so as to obtain the elasticity-elasticity-plasticity of microconvex body according to the plastic index. The critical frequency ordinal of plastic deformation, and based on the Hertz contact theory, the contact load and contact stiffness of the entire joint surface are obtained by integrating the micro-convex bodies in different frequency intervals. Finally, the combination of finite element simulation and experiment verifies the correctness of the theoretical model, and proves that the above theoretical model has strong engineering application value.
关键词
结合面 /
分形理论 /
塑性指数 /
频率序数 /
接触刚度
{{custom_keyword}} /
Key words
Contact surface /
Fractal theory /
Plasticity index /
Frequency ordinal /
Contact stiffness
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Guo X, Ma B, Zhu Y. A magnification-based multi-asperity (MBMA) model of rough contact without adhesion [J]. Journal of the Mechanics and Physics of Solids, 2019, 133:103724.
[2] Greenwood J, Williamson J. Contact of nominally flat surfaces [J]. Proceedings of the Royal Society of London, 1966, 295(1442):300-319.
[3] 赵永武, 吕彦明, 蒋建忠. 新的粗糙表面弹塑性接触模型[J]. 机械工程学报, 2007(03):99-105.
Zhao Y,Lv Y ,Jiang J.A new elastic-plastic contact model for rough surfaces [J].CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2007(03):99-105.
[4] Whitehouse D, Archard J. The properties of random surfaces of significance in their contact[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1970, 316(1524): 97-121.
[5] Kadin Y, Kligerman Y, Etsion I. Unloading an elastic-plastic contact of rough surfaces [J]. Journal of the Mechanics and Physics of Solids, 2006, 54(12):p. 2652-2674.
[6] 傅卫平, 娄雷亭, 高志强,等. 机械结合面法向接触刚度和阻尼的理论模型[J]. 机械工程学报, 2017, 053(009):73-82.
Fu W, Lou L, Gao Z, et al. Theoretical model of normal contact stiffness and damping of mechanical bonding surfaces[J]. CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2017, 053(009):73-82.
[7] Ciavarella M, Murolo G, Demelio G, et al. Elastic contact stiffness and contact resistance for the Weierstrass profile [J]. Journal of the Mechanics and Physics of Solids, 2004, 52(6):1247-1265.
[8] Persson B. Theory of rubber friction and contact mechanics [J]. Journal of Chemical Physics, 2007, 115(8):3840-3861.
[9] Mandelbrot B. The fractal geometry of nature. New York: W. H. Freeman and Company, 1982.
[10] Berry M, Lewis Z. On the Weierstrass-Mandelbrot Fractal Function [J]. Proceedings of the Royal Society of London, 1980, 370(1743):459-484.
[11] Majumdar A, Bhushan B. Fractal model of elastic-plastic contact between rough surfaces [J].Journal of Tribology, 1991, 113(1): 1-11.
[12]Zhao Y, Xu J, Cai L, et al. Stiffness and damping model of bolted joint based on the modified three-dimensional fractal topography [J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 2016, 203-210.
[13] Yuan Y, Chen J, Zhang L. Loading-unloading contact model between three-dimensional fractal rough surfaces [J]. AIP Advances, 2018, 8(7).
[14] Jalali H, Khodaparast H, Friswell M. The Effect of Preload and Surface Roughness Quality on Linear Joint Model Parameters [J]. Journal of Sound and Vibration, 2019.
[15] Liu W, Wang Y, Li X, et al. The Normal Dynamic Stiffness Model of Joint Interfaces Based on Fractal Theory [J]. IOP Conference Series: Earth and Environmental Science, 2019.
[16] Wang R, Zhu L, Zhu C. Research on fractal model of normal contact stiffness for mechanical joint considering asperity interaction [J]. International Journal of Mechanical Sciences, 134(2017)357-369.
[17] Liang A, Bian Y, Chen Q, et al. Fractal Prediction Model for the Contact of Friction Surface and Simulation Analysis[C]// International Conference on Industrial Technology & Management. 2019.
[18]Liu Z, Jiang K, Zhang C, et al. A stiffness model of a joint surface with inclination based on fractal theory [J]. Precision Engineering, 2020, 62:47-61.
[19] Liu Z, Jiang K, Dong X, et al. A research method of bearing coefficient in fasteners based on the fractal and Florida theory [J]. Tribology International,2020.
[20] 葛世荣,朱华.摩擦学的分形[M] .机械工业出版 社.2005:132-133.
Ge S, Zhu H. Tribological fractals[M].China Machine Press. 2005:132-133.
[21] 瓦伦丁 L.波波夫.接触力学与摩擦学的原理及其应用.第二版.李强,雒建斌译.北京:清华大学出版社,2011:79-90.
Valentin L. Popow. Contact Mechanics and Friction Physical Principies and Applications(Second Edition).Li Q, Luo J. Bei jing, Tsinghua University Press,2011:79-90.
[22] Zhao Y, Yang C, Cai L, et al. Stiffiness and damping model of bolted joint with unven surface contact pressure distribution [J].Journal of Mechanical Engineering.2015.
[23]Zhao Y,Xu J,Cai L, et al. Contact stiffiness determination of high-speed double-locking toolholder-spindle joint based on a macro-micro scale hybrid method [J]. Internation Journal of Precision Engineering and Manufacturing.2016.
[24] Zhang Y, Lu H, Zhang X, et al. A normal contact stiffness model of machined joint surfaces considering elastic, elasto-plastic and plastic factors [J]. Engineering Tribology,2019.
[25] Xiao H, Sun Y, Chen Z. Fractal modeling of normal contact stiffness for rough surface contact considering the elastic–plastic deformation [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(1).
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}