磁力非线性耦合的I-L组合压电梁俘能器发电性能试验研究

王曼1,2,侯成伟1,孟金棚1,杨小辉1,宋汝君1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 123-128.

PDF(1834 KB)
PDF(1834 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 123-128.
论文

磁力非线性耦合的I-L组合压电梁俘能器发电性能试验研究

  • 王曼1,2,侯成伟1,孟金棚1,杨小辉1,宋汝君1
作者信息 +

Experimental test for power generation performance of I-L composite piezoelectric beam energy harvester with magnetic nonlinear coupling

  • WANG Man1,2, HOU Chengwei1, MENG Jinpeng1, YANG Xiaohui1, SONG Rujun1
Author information +
文章历史 +

摘要

针对线性的压电振动俘能器俘能频带过窄,输出较低等问题,提出了一种磁力非线性耦合的I-L组合压电梁俘能器。俘能器由带永磁铁的I型压电梁和L型压电梁组成,可通过调节两永磁铁间的水平距离,得到不同的非线性磁力耦合效应。试验结果表明:存在最优电阻使压电俘能系统的输出功率最大;对比无磁力系统,磁力耦合的I-L组合压电梁俘能器共振频率发生了明显的偏移:I型压电梁向左偏移,L型压电梁向右偏移,拓宽了系统的俘能频带;当激励加速度为0.2g水平距离为20 mm、激振频率为18.4 Hz时,俘能器最大可得到1.2 mW的输出功率。

Abstract

Here, aiming at problems of narrower energy capture frequency band and lower output of linear piezoelectric vibration energy harvester, an I-L composite piezoelectric beam energy harvester with magnetic nonlinear coupling was proposed. The energy harvester was composed of I-shaped piezoelectric beam with permanent magnet and L-shaped one. Different nonlinear magnetic coupling effects could be obtained by adjusting horizontal distance between the two permanent magnets. The test results showed that there is an optimal resistance to maximize output power of the piezoelectric energy harvesting(PEH) system; compared with the non-magnetic system, the resonance frequency of the proposed energy harvester has an obvious shift with I-type piezoelectric beam shifting to the left and L-type one shifting to the right to widen the energy capture frequency band of the system; when the excitation acceleration is 0.2g, the horizontal distance is 20 mm and the excitation frequency is 18.4 Hz, the proposed energy harvester can obtain the maximum output power of 1.2 mW.

关键词

磁力非线性 / I-L组合梁 / 压电俘能器(PEH) / 试验研究

Key words

magnetic nonlinearity / I-L composite beam / piezoelectric energy harvesting(PEH) / experimental study

引用本文

导出引用
王曼1,2,侯成伟1,孟金棚1,杨小辉1,宋汝君1. 磁力非线性耦合的I-L组合压电梁俘能器发电性能试验研究[J]. 振动与冲击, 2022, 41(3): 123-128
WANG Man1,2, HOU Chengwei1, MENG Jinpeng1, YANG Xiaohui1, SONG Rujun1. Experimental test for power generation performance of I-L composite piezoelectric beam energy harvester with magnetic nonlinear coupling[J]. Journal of Vibration and Shock, 2022, 41(3): 123-128

参考文献

[1] 徐振龙, 单小彪, 谢涛. 宽频压电振动俘能器的研究现状综述[J]. 振动与冲击, 2018,37(8)
     XU Zhenlong, SHAN Xiaobiao, XIE Tao. A review of the research status of broadband piezoelectric vibrational energy harvester[J]. Journal of Vibration and Shock, 2018,37(8)
[2] WANG J, ZHOU S, ZHANG Z, et al. High-Performance Piezoelectric Wind Energy Harvester with Y-Shaped Attachments[J]. Energy Conversion and Management, 2019,181:645-652.
[3] YANG Z, ZHOU S, ZU J, et al. High-Performance Piezoelectric Energy Harvesters and Their Applications[J]. Joule, 2018,2(4):642-697.
[4] SHAN X, TIAN H, CHEN D, et al. A Curved Panel Energy Harvester for Aeroelastic Vibration[J]. Applied Energy, 2019,249:58-66.
[5] WANG J, GENG L, ZHOU S, et al. Design, Modeling and Experiments of Broadband Tristable Galloping Piezoelectric Energy Harvester[J]. Acta Mechanica Sinica, 2020, 36(3):592-605.
[6] YANG Z, ZU J. High-Efficiency Compressive-Mode Energy Harvester Enhanced by a Multi-Stage Force Amplification Mechanism[J]. Energy Conversion and Management, 2014,88:829-833.
[7] 周生喜, 曹军义, ERTURK A, 等. 压电磁耦合振动能量俘获系统的非线性模型研究[J]. 西安交通大学学报, 2014,48(1):106-111.
     ZHOU Shengxi, CAO Junyi, ERTURK A, et al. Study on nonlinear model of energy capture system of piezoelectromagnetism coupled vibration[J]. Journal of Xi'an Jiaotong University, 2014,48(1):106-111
[8] LIU H, GAO S, WU J, et al. Study on the Output Performance of a Nonlinear Hybrid Piezoelectric- Electromagnetic Harvester under Harmonic Excitation[J]. Acoustics, 2019,1(2):382-392.
[9] LI K, YANG Z, ZHOU S. Performance Enhancement for a Magnetic-Coupled Bi-Stable Flutter-Based Energy Harvester[J]. Smart Materials and Structures, 2020,29(8): 085045.
[10] MEI X, ZHOU S, YANG Z, et al. The Benefits of an Asymmetric Tri-Stable Energy Harvester in Low-Frequency Rotational Motion[J]. Applied Physics Express, 2019,12(5): 057002.057001-057002.057005.
[11] WEI C, JING X. A Comprehensive Review on Vibration Energy Harvesting: Modelling and Realization[J]. Renewable and Sustainable Energy Reviews, 2017,74:1-18.
[12] HUANG D, ZHOU S, LITAK G. Theoretical Analysis of Multi-Stable Energy Harvesters with High-Order Stiffness Terms[J]. Communications in Nonlinear Science and Numerical Simulation, 2019,69:270-286.
[13] WANG J, GENG L, YANG K, et al. Dynamics of the Double-Beam Piezo–Magneto–Elastic Nonlinear Wind Energy Harvester Exhibiting Galloping-Based Vibration[J]. Nonlinear Dynamics, 2020,100(3):1963-1983.
[14] CAO S, LIU L, ZHENG J, et al. Modeling and Analysis of Galfenol Nonlinear Cantilever Energy Harvester with Elastic Magnifier[J]. IEEE Transactions on Magnetics, 2019,55(6): 1-5.
[15] HUANG D, LI R, ZHOU S, et al. Theoretical Analysis of Vibration Energy Harvesters with Nonlinear Damping and Nonlinear Stiffness[J]. The European Physical Journal Plus, 2018,133(12)
[16] ERTURK A, INMAN D J. Broadband Piezoelectric Power Generation on High-Energy Orbits of the Bistable Duffing Oscillator with Electromechanical Coupling[J]. Journal of Sound and Vibration, 2011,330(10):2339-2353.
[17] YAN Z, LEI H, TAN T, et al. Nonlinear Analysis for Dual-Frequency Concurrent Energy Harvesting[J]. Mechanical Systems and Signal Processing, 2018,104: 514-535.
[18] ZHOU S, ZUO L. Nonlinear Dynamic Analysis of Asymmetric Tristable Energy Harvesters for Enhanced Energy Harvesting[J]. Communications in Nonlinear Science and Numerical Simulation, 2018,61:271-284.
[19] FERRARI M, FERRARI V, GUIZZETTI M, et al. Improved Energy Harvesting from Wideband Vibrations by Nonlinear Piezoelectric Converters[J]. Sensors and Actuators A: Physical, 2010,162(2):425-431.
[20] 张宇, 王建国. 势阱特性对磁力双稳态压电俘能器性能的影响研究[J]. 应用力学学报, 2019,36(4):812-818.
     ZHANG Yu, WANG Jianguo. Study on the effect of potential well characteristics on the performance of magnetic bistable piezoelectric energy trap[J]. Chinese Journal of Applied Mechanics, 2019,36(4):812-818.
[21] 高世桥, 闫丽, 金磊, 等. 非线性双端固支梯形梁压电俘能器结构设计与特性分析[J]. 农机机械学报, 2019,50(7):398-405.
     GAO Shiqiao, YAN Li, JIN Lei, et al. Structural design and characteristic analysis of piezoelectric energy capture device for trapezoidal beam with two fixed ends[J]. Journal of Agricultural Machinery and Machinery, 2019,50(7): 398-405.
[22] YAO M, LIU P, MA L, et al. Experimental Study on Broadband Bistable Energy Harvester with L-Shaped Piezoelectric Cantilever Beam[J]. Acta Mechanica Sinica, 2020,36(3):557-577.
[23] 喻其炳, 朱荣荣, 李川. 多频响应的压电振动能量采集器的性能分析与测试[J]. 中国机械工程, 2014,25(15):2064-2069.
     YU Qibing, ZHU Rongrong, LI Chuan. Performance analysis and test of multi-frequency response piezoelectric vibrational Energy Collector[J]. Chinese Journal of Mechanical Engineering, 2014,25(15):2064-2069
[24] ZHOU S, CAO J, WANG W, et al. Modeling and Experimental Verification of Doubly Nonlinear Magnet- Coupled Piezoelectric Energy Harvesting from Ambient Vibration[J]. Smart Materials and Structures, 2015,24(5): 055008. 

PDF(1834 KB)

Accesses

Citation

Detail

段落导航
相关文章

/