基于有限元-向量式有限元的斜拉桥非线性振动计算方法

王涛1,胡宇鹏2,张兴标1,刘德贵1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 129-138.

PDF(3224 KB)
PDF(3224 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 129-138.
论文

基于有限元-向量式有限元的斜拉桥非线性振动计算方法

  • 王涛1,胡宇鹏2,张兴标1,刘德贵1
作者信息 +

Nonlinear vibration calculation method for cable-stayed bridge based on finite element & vector form finite element method

  • WANG Tao1, HU Yupeng2, ZHANG Xingbiao1, LIU Degui1
Author information +
文章历史 +

摘要

向量式有限元法本质上是考虑几何非线性的有限元显式动力时程积分方法。阐述了向量式有限元的基本原理,对比了向量式有限元与基于单元随动坐标系的非线性有限元动力计算方法的相同点与差别,开发了使用杆、梁单元的有限元-向量式有限元统一算法框架的计算程序。使用该程序建立了大跨度斜拉桥计算模型,首先,使用非线性有限元法计算了斜拉桥的静力状态与动力特性,计算了列车-桥梁耦合动力作用下桥梁的振动;然后,使用向量式有限元计算了斜拉桥在拉索突然断裂状态下的非线性振动;最后,计算了在列车-桥梁耦合动力作用下,拉索发生断裂时,桥梁与列车的振动状态。结果表明:使用向量式有限元可以简单可靠地直接模拟斜拉桥在破坏状态下的非线性振动状态;列车运行至跨中附近时,若斜拉桥跨中最长拉索突然发生断裂,对其它拉索的安全性影响不大,离断裂拉索越远的拉索受到的影响越小,但拉索突然断裂会对桥上行驶中列车的安全性造成威胁。本文为大跨度斜拉桥在破坏状态下的非线性振动分析提供了新的解决方案。

Abstract

Vector form finite element method in essence is an explicit dynamic time-history integration method by considering geometric nonlinearity. The basic principle of vector finite element was described. The similarities and differences between the vector form finite element method and the nonlinear finite element method dynamic calculation based on co-rotational formulation element coordinate system are compared. A program for calculating the unified algorithm framework of finite element and vector form finite element using link and beam elements was developed. It makes up for the shortcomings of the two calculation methods. The calculation model of the long-span cable-stayed bridge was established by using the program. Firstly, the nonlinear finite element method was used to calculate the static state and dynamic characteristics of the cable-stayed bridge, and the vibration of the bridge under the coupled dynamic action of train and bridge was calculated. Then, the nonlinear vibration characteristics of cable-stayed bridge under the condition of sudden cable fracture are calculated by using vector form finite element method. Finally, the vibration state of the bridge and the train when the cable breaking under train-bridge coupled dynamic effect was calculated. The results show that, the nonlinear vibration of cable-stayed bridges under failure can be simulated directly and reliably by using vector form finite element method. When the train runs near the mid-span, if the longest cable breaks suddenly in the mid-span of a cable-stayed bridge, the safety of other cables is not affected much, and the further away from the broken cables, the less affected the cables are. The sudden fracture of the cable can pose a threat to the safety of the moving train. This paper provides a new technical scheme for nonlinear vibration analysis of long-span cable-stayed Bridges under failure condition.

关键词

桥梁工程 / 斜拉桥 / 向量式有限元 / 非线性振动 / 拉索断裂

Key words

Bridge engineering / Cable-stayed bridge / Vector Form Finite Element Method / Nonlinear Vibration / Cable breakage

引用本文

导出引用
王涛1,胡宇鹏2,张兴标1,刘德贵1. 基于有限元-向量式有限元的斜拉桥非线性振动计算方法[J]. 振动与冲击, 2022, 41(3): 129-138
WANG Tao1, HU Yupeng2, ZHANG Xingbiao1, LIU Degui1. Nonlinear vibration calculation method for cable-stayed bridge based on finite element & vector form finite element method[J]. Journal of Vibration and Shock, 2022, 41(3): 129-138

参考文献

[1]  陈政清,曾庆元,颜全胜. 空间杆系结构大挠度问题内力分析的UL列式法[J]. 土木工程学报, 1992, 25(5):34-44.
Chen Zhengqing, Zeng Qingyuan, Yan Quansheng. A U.L. formulation for internal force analysis of spatial frame structures with large displacement[J]. China Civil Engineering Journal. 1992, 25(5): 34-44
[3]  Wempner G A. Finite elements, finite rotations and small strains of flexible shells[J]. International Journal of Solids and Structures, 1969, 5(7): 117-153.
[3]  邓继华, 邵旭东, 谭平. 几何非线性与徐变共同作用下三维杆系结构有限元分析[J]. 工程力学, 2015(6):117-123.
       DENG Jihua, Shao Xudong, Tan Ping. finite element analysis for 3-d frame structures under combined actions of geometric nonlinearity and creep [J]. Engineering Mechanics, 2015(6):117-123.
[4]  潘永仁. 悬索桥结构非线性分析理论与方法[M]. 北京:人民交通出版社,2001.
Pan Yongren. Non-linear analysis theory method for suspension bridge structure[M]. Beijing: China communication Press, 2001.
[5] 王涛,刘德贵,胡安杰.  基于流动坐标系的3维空间动力非线性有限元方法[J]. 振动与冲击,2018,37(16):14-23.
        WANG Tao,LIU Degui,HU Anjie. A nonlinear dynamic finite element method in 3D space based on the Co-rotational formulation. Journal of Vibration and Shock, 2018, 37(16): 14-23. [6]  Ting E C , Shih C , Wang Y K . Fundamentals of a Vector Form Intrinsic Finite Element: Part I. Basic Procedure and A Plane Frame Element[J]. JOURNAL OF MECHANICS, 2004, 20(2):113-122.
[7] 丁承先, 段元锋, 吴东岳. 向量式结构力学[M]. 北京:科学出版社, 2012.
      Ting E C. Duan Yuanfeng, Wu Dongyue. Vector Mechanics of Structures[M]. Beijing:Science Press.2012.
[8] 陈冲. 基于向量式有限元的索杆结构精细化分析和倒塌破坏研究[D]. 杭州:浙江大学,2017.
[9] 王震, 赵阳, 杨学林. 基于向量式有限元的实体结构非线性行为分析[J]. 建筑结构学报, 2015, 36(3) :133-140.
WANG Zhen, Zhao Yang, YANG Xuelin, Nonlinear Bebavior analysis of entity structure basaed on vector for intrinsic finite element[J]. Journal of Building Structures, 2015, 36(3) : 133-140.
[10] 王震, 赵阳, 杨学林. 薄膜断裂和穿透的向量式有限元分析及应用[J]. 计算力学学报, 2018(3) :315-321.
WANG Zhen, ZHAO Yang, YANG Xuelin. Analysis and application of the vector for intrinsic finite element for fracture and penetration of thin-membrane[J]. Chinese Journal of Computational Mechanics, 2018(3):315-321.
[11] 曲激婷, 宋全宝. 基于向量式有限元的黏滞阻尼减震结构 抗竖向连续倒塌动力反应分析[J]. 地震工程学报, 2019, 041(006):1432-1439.
QU Jiting, SONG Quanboa. Dynamic Response Analysis of Resisting Vertical Progressive Collapse of Frame Structure with Viscous Dampers Based on the Vector Form Intrinsic Finite Element Method[J]. China Earthquake Engineering Journal, 2019, 041(006):1432-1439.
[12] Duan Y F , Wang S M , Yau J D . Vector Form Intrinsic Finite Element Method for Analysis of Train–Bridge Interaction Problems Considering The Coach-Coupler Effect[J]. International Journal of Structural Stability and Dynamics, 2019, 19(02):936-944.
[13] 李效民,郝兴龙,李朋.浅海竖L型悬空管道三维动力响应分析[J].振动与冲击,2020,39(20):47-54.
LI Xiaomin, HAO Xinglong, LI Peng. Three-dimensinoal dynamic response analysis of a vertical L-shaped suspended pipeline in shallow sea[J]. Journal of Vibration and Shock, 2020,39(20):47-54.
[14]Cundall P A. A computer model for simulating progressive, large scale movement in blocky rock systems[J]. Symposium of International Society of Rock Mechanics. Nancy :,1971:1-8.
[15]齐念, 叶继红. 基于离散元法的杆系结构几何非线性大变形分析[J]. 东南大学学报(自然科学版), 2013, 43(5):917-922.
QI Nian, YE Jihong, Geometric nonlinear analysis with large deformation of menber structures by discrete element method[J]. Journal of southeast University( Naturnal Science Edition), 2013, 43(5):917-922.
[16]叶继红, 张梅. 基于杆系离散单元法的单层网壳结构屈曲行为研究[J]. 建筑结构学报, 2019, 40(03):54-61.
YE Jihong, ZHANG Mei, Buckling behavior of single-layer reculated shells based on member discrete element method[J],Journal of Building Structures, 2019, 40(03):54-61.
[17] 叶继红, 王佳. 基于GPU的杆系离散元并行算法在大型工程结构中的应用[J]. 工程力学, 2021, 38(2): 1-7
       Ji-hong YE, Jia WANG. Application Of Gpu-Based Parallel Computing Method For Dem In Large Engineering Structures[J]. Engineering Mechanics, 2021, 38(2): 1-7
[18] 徐荣桥. 结构分析的有限元法与MATLAB程序设计[M]. 北京:人民交通出版社, 2006.
Xu Rongqiao , Finite element Method in Structural Analysis and Matlab Programming[M]. Beijing: China Communications Press, 2006.
[19] Nayfeh A.H, Mook D.T. Nonlinear Oscillations[M]. New York: Wiley Press, 1984.
[20]张超, 付馨迪, 杜修力, 颜学渊, 许莉, 贾宏宇. 多重四边形环索-张弦穹顶局部断索冲击分析[J]. 工程力学, 2021, 38(1): 64-77.
Chao ZHANG, Xin-di FU, Xiu-li DU, Xue-yuan YAN, Li XU, Hong-yu JIA. Dynamic Analysis Of Multi-Loop Cable-String Dome Due To Sudden Cable Failure[J]. Engineering Mechanics, 2021, 38(1): 64-77.
[21]张羽,方志,卢江波,向宇,龙海滨. 大跨混凝土斜拉桥施工过程中结构的断索动力响应[J]. 振动与冲击, 2021, 40(5): 237-246.
ZHANG Yu, FANG Zhi, LU Jiangbo, XIANG Yu, LONG Haibin. Broken cable-induced dynamic response of long-span concrete cable stayed bridge during construction. Journal of Vibration and Shock, 2021, 40(5): 237-246.
[22]Zhou Y, Chen S. Framework of Nonlinear Dynamic Simulation of Long-Span Cable-Stayed Bridge and Traffic System Subjected to Cable-Loss Incidents[J]. Journal of Structural Engineering, 2016, 142(3):04015160.
[23] 李永乐. 风-车-桥系统非线性空间耦合振动研究[D]. 成都:西南交通大学, 2003.
        Li Yongle. Nonlinear Three-Dimensional Coupling Vibration of Wind-Vehicle-bridge System [D]. Chengdu:Southwest Jiaotong University.2003.
[24] 秦顺全. 武汉天兴洲公铁两用长江大桥关键技术研究[M]. 北京:人民交通出版社, 2008.
QIN Shunquan. Key Technologies Study of Tianxingzhou Rail-cum-road Yangtze River Bridge in Wuhan[M] Beijing: China Communications Press. 2008.
[25] 王涛. 斜拉桥拉索的索-梁相关振动研究[D]. 成都:西南交通大学, 2015.
Wang Tao. The Investigation on Cable-beam vibration of the Cable in Cable-Stayed Bridge[D]. Chengdu: Southwest Jiaotong University, 2014.

PDF(3224 KB)

Accesses

Citation

Detail

段落导航
相关文章

/