基于信号子空间的新型盲解卷积方法

周涛1,2,赵明1,郭栋2,欧曙东1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 139-147.

PDF(2707 KB)
PDF(2707 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 139-147.
论文

基于信号子空间的新型盲解卷积方法

  • 周涛1,2,赵明1,郭栋2,欧曙东1
作者信息 +

A new blind deconvolution method based on signal subspace

  • ZHOU Tao1,2, ZHAO Ming1, GUO Dong2, OU Shudong1
Author information +
文章历史 +

摘要

解卷积方法已广泛应用于振动信号的故障冲击提取。然而设备运行工况复杂多变、故障特征周期难以准确预知以及随机冲击干扰,使得当前的解卷积方法难以适应工业现场复杂环境下故障冲击增强的需求。针对上述问题,提出了一种基于信号子空间的新型盲解卷积方法。该方法通过奇异值分解(SVD)方法将测试信号空间分解,分离各子空间,在此基础上通过稀疏编码收缩抑制子空间噪声,以脉冲稀疏指数为指标筛选有效子空间,最后迭代实现故障脉冲提取。轴承变转速仿真实验和列车轴承实验结果表明,该方法不仅可以有效消除随机冲击和噪声,避免能量对子空间筛选的影响,而且在缺乏准确的故障特征周期情况下仍能实现故障脉冲的准确提取。

Abstract

The deconvolution methods have been widely applied to extract the fault impulse from the vibration signal. However, due to the complex and changeable operating conditions of the equipment, the difficulty in accurately predicting the fault feature period and the interference of random impulse, the current deconvolution method is difficult to meet the requirements of the enhanced fault impulse in the complex environment of the industrial site. To solve the above problem, a blind deconvolution method based on signal subspace was proposed. The method decomposed the test signal space and separated each subspace by singular value decomposition (SVD), restrained subspace noise by sparse code shrinkage. Then effective subspace was screened based on impulse sparse index. Finally fault impulse was extracted by iteration. The experimental results of bearing simulation signals in variable speed and train bearing show that proposed method can effectively eliminate the interference of random impulse and noise, avoid the influence of energy on subspace screening, and accurately extract fault impulse without the precise fault feature period.

关键词

盲解卷积 / 奇异值分解 / 最小熵解卷积 / 变转速

Key words

Blind deconvolution / Singular value decomposition / Minimum entropy deconvolution / Variable speed

引用本文

导出引用
周涛1,2,赵明1,郭栋2,欧曙东1. 基于信号子空间的新型盲解卷积方法[J]. 振动与冲击, 2022, 41(3): 139-147
ZHOU Tao1,2, ZHAO Ming1, GUO Dong2, OU Shudong1. A new blind deconvolution method based on signal subspace[J]. Journal of Vibration and Shock, 2022, 41(3): 139-147

参考文献

[1] Wiggins R A. Minimum entropy deconvolution[J]. Geoexploration, 1978, 16(1): 21-35.
[2] Cabrelli C A. Minimum entropy deconvolution and simplicity: a noniterative algorithm[J]. Geophysics, 1985, 50(3): 394-413.
[3] Endo H, Randall R B. Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter[J]. Mechanical Systems and Signal Processing, 2007, 21(2): 906-919.
[4] Sawalhi N, Randall R B, Endo H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis[J]. Mechanical Systems and Signal Processing, 2007, 21(6): 2616-2633.
[5] 王宏超, 陈进, 董广明. 基于最小熵解卷积与稀疏分解的滚动轴承微弱故障特征提取[J]. 机械工程学报, 2013, 49(1):88-94.
Wang H, Chen J, Dong G. Fault diagnosis method for rolling bearing's weak fault based on minimum entropy deconvolution and sparse decomposition[J]. Journal of Mechanical Engineering, 2013, 49(1): 88-94.
[6] Jiang R, Chen J, Dong G, et al. The weak fault diagnosis and condition monitoring of rolling element bearing using minimum entropy deconvolution and envelop spectrum[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2012, 227(5): 1116-1129.
[7] He D, Wang X, Li S, et al. Identification of multiple faults in rotating machinery based on minimum entropy deconvolution combined with spectral kurtosis[J]. Mechanical Systems and Signal Processing, 2016, 81: 235-249.
[8] 陈海周, 王家序, 汤宝平,等. 基于最小熵解卷积和Teager能量算子直升机滚动轴承复合故障诊断研究[J]. 振动与冲击, 2017, 36(009):45-50,73.
Chen H, Wang J, Tang B, et al. Helicopter rolling bearing hybrid faults diagnosis using minimum entropy deconvolution and Teager energy operator[J]. Journal of Vibration and Shock, 2017, 36(9): 45-50,73.
[9] Mcdonald G L, Zhao Q, Zuo M J. Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection[J]. Mechanical Systems and Signal Processing, 2012, 33: 237-255.
[10] Miao Y, Zhao M, Lin J, et al. Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2017, 92: 173-195.
[11] Mcdonald G L, Zhao Q. Multipoint Optimal Minimum Entropy Deconvolution and Convolution Fix: Application to vibration fault detection[J]. Mechanical Systems and Signal Processing, 2017, 82: 461-477.
[12] Buzzoni M, Antoni J, D'elia G. Blind deconvolution based on cyclostationarity maximization and its application to fault identification[J]. Journal of Sound and Vibration, 2018, 432: 569-601.
[13] 刘岩,伍星,刘韬,陈庆.基于自适应MOMEDA与VMD的滚动轴承早期故障特征提取[J].振动与冲击,2019,38(23):219-229.
Liu Y, Wu X, Liu T, et al. Feature extraction for rolling bearing incipient faults based on adaptive MOMEDA and VMD[J]. Journal of Vibration and Shock, 2019, 38(23): 219-229.
[14] 夏均忠,于明奇,白云川,刘鲲鹏,吕麒鹏.基于改进信息图与MOMEDA的滚动轴承故障特征提取[J].振动与冲击,2019,38(04):26-32.
Xia J, Yu M, Bai Y, et al. Fault feature extraction of rolling element bearing based on improved infogram and MOMEDA[J]. Journal of Vibration and Shock, 2019, 38(4): 26-32.
[15] 钟先友,赵春华,陈保家,田红亮.基于MCKD和重分配小波尺度谱的旋转机械复合故障诊断研究[J].振动与冲击,2015,34(07):156-161.
Zhong X, Zhao C, Chen B, et al. Rotating machinery fault diagnosis based on maximum correlation kurtosis deconvolution and reassigned wavelet scalogram[J]. Journal of Vibration and Shock, 2015, 34(7): 156-161.
[16] 潘高元,李舜酩,杜华蓉,朱彦祺.齿轮箱断齿特征识别的S变换-SVD降噪组合方法[J].振动与冲击,2019,38(18):256-263.
Pan G, Li S, Du H, et al. Feature extracting method for gearbox tooth breakage under impact based on the S-transform time-frequency spectrum combined with the denoising by SVD[J]. Journal of Vibration and Shock, 2019, 38(18): 256-263.
[17] 黄晨光,林建辉,丁建明,刘泽潮.一种新的差分奇异值比谱及其在轮对轴承故障诊断中的应用[J].振动与冲击,2020,39(04):17-26.
Huang C, Lin J, Ding J, et al. A novel energy difference singular value ratio spectrum and its application to wheelset bearing fault diagnosis[J]. Journal of Vibration and Shock, 2020, 39(4): 17-26.
[18] 黄晨光,林建辉,易彩,黄衍,靳行.延伸奇异值分解包及其在高速列车轮对轴承故障诊断中的应用[J].振动与冲击,2020,39(05):45-56.
Huang C, Lin J, Yi C, et al. Extended SVD packet and its application in wheelset bearing fault diagnosis of high-speed train[J]. Journal of Vibration and Shock, 2020, 39(5): 45-56.
[19] 赵学智, 叶邦彦, 陈统坚. 基于小波—奇异值分解差分谱的弱故障特征提取方法[J]. 机械工程学报, 2012(07):37-48.
Zhao X, Ye B, Chen T. Extraction Method of Faint Fault Feature Based on Wavelet-SVD Difference Spectrum[J]. Journal of Mechanical Engineering, 2012, 48(7): 37-48.
[20] 曾鸣, 杨宇, 郑近德, 程军圣. u-SVD降噪算法及其在齿轮故障诊断中的应用[J]. 机械工程学报, 2015, 51(3): 95-103.
Zeng M. µ-SVD Based Denoising Method and Its Application to Gear Fault Diagnosis[J]. Journal of Mechanical Engineering, 2015, 51(3): 95-103.
[21] Xu X, Zhao M, Lin J. Detecting weak position fluctuations from encoder signal using singular spectrum analysis[J]. ISA Transactions, 2017, 71: 440-447.
[22] Zhao M, Jia X. A novel strategy for signal denoising using reweighted SVD and its applications to weak fault feature enhancement of rotating machinery[J]. Mechanical Systems and Signal Processing, 2017, 94: 129-147.
[23] Hyvarinen A. Sparse code shrinkage: Denoising of nongaussian data by maximum likelihood

PDF(2707 KB)

609

Accesses

0

Citation

Detail

段落导航
相关文章

/