波浪锥型圆柱流固耦合振动机理研究

邹琳,秦傲,杨耀宗,列煜俊,徐劲力

振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 18-26.

PDF(3535 KB)
PDF(3535 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 18-26.
论文

波浪锥型圆柱流固耦合振动机理研究

  • 邹琳,秦傲,杨耀宗,列煜俊,徐劲力
作者信息 +

Fluid-structure coupled vibration mechanism of wave conical cylinder

  • ZOU Lin, QIN Ao, YANG Yaozong, LIE Yujun, XU Jinli
Author information +
文章历史 +

摘要

为增强及控制无叶片风力俘能结构能量采集效率,本文将表面结构斜率参数引入波浪型圆柱,发展了一种新型波浪锥型圆柱,数值及实验研究雷诺数Re=3900下不同波长比、波幅比及斜率参数波浪锥型圆柱涡激振动响应特性。研究发现:在不同折合流速下,斜率k=0.05的锥型圆柱和波长比λ/Dm=1.75、波幅比α/Dm=0.10、斜率k=0.05的波浪锥型圆柱最大振幅较直圆柱分别增长26.4%和12.6%,且锁频区间得以拓展;当折合流速在锁频区间内时,在波浪锥型圆柱绕流尾流中观察到了“2S”、“2P”涡脱模式,并且“2P”涡脱模式在往下游发展的过程中有转变为“2C”模式的趋势。该研究可为无叶片风力俘能结构涡致振动和发电效率的提升提供理论支持。

Abstract

In order to enhance and control the energy collection efficiency of the bladeless wind energy capture structure, this paper introduces the slope parameter of the surface structure into the wave-shaped cylinder, and develops a new type of wave-cone-shaped cylinder. Numerical and experimental research on the response characteristics of wave-cone cylindrical vortex-induced vibration with different wavelength ratio, wave amplitude ratio and slope parameters under Reynolds number Re=3900. The study found that at different reduced flow rates, the cone cylinders with slope k=0.05 and the wavy cone cylinder with wavelength ratio λ/Dm =1.75, wave amplitude ratio α/Dm =0.10, slope k=0.05 have the maximum amplitude ratio increased, compared with the straight cylinder, the maximum amplitude increases by 26.4% and 12.6% respectively, and their frequency lock range can be expanded. When the reduced flow velocity is in the locked frequency range, “2S” and “2P” vortex detachment modes are observed in the wake of the wave-conical cylindrical flow, and the “2P” vortex detachment mode tends to change to “2C” mode as it develops downstream. This research can provide theoretical support for the vortex-induced vibration of bladeless wind energy capture structures and the improvement of power generation efficiency.

关键词

波浪锥型圆柱 / 流固耦合 / 涡激振动 / 增振 / 数值计算

Key words

wavy cone cylinder / fluid-structure coupling / vortex-induced vibration / increase vibration / numerical simulation

引用本文

导出引用
邹琳,秦傲,杨耀宗,列煜俊,徐劲力. 波浪锥型圆柱流固耦合振动机理研究[J]. 振动与冲击, 2022, 41(3): 18-26
ZOU Lin, QIN Ao, YANG Yaozong, LIE Yujun, XU Jinli. Fluid-structure coupled vibration mechanism of wave conical cylinder[J]. Journal of Vibration and Shock, 2022, 41(3): 18-26

参考文献

[1] 张建,郑史雄,唐煜,等. 基于节段模型试验的悬索桥涡振性能优化研究[J]. 实验流体力学,2015,29(02):48-54.
ZHANG Jian, ZHENG Shixiong, TANG Yu,et al. Research on optimizing vortex-induced vibration performance for suspension bridge base on section model test[J]. Journal of Experiments in Fluid Mechanics,2015,29(02):48-54.
[2] 遆子龙,李永乐,徐昕宇. 大跨钢桁拱桥局部杆件动力特性及涡振发生风速的影响因素研究[J]. 振动与冲击,2018,37(06):174-181.
TI Zilong, LI Yongle, XU Xinyu. Influencing factors of dynamic characteristics and onset wind speed of the vortex-induced vibration of local members in a long-span steel truss arch bridge[J]. Journal of Vibration and Shock,2018,37(06):174-181.
[3] 周国成,柳贡民,马俊,等. 圆柱涡激振动数值模拟研究[J].噪声与振动控制,2010, 30(5):51-55,59.
ZHOU Guocheng, LIU Gongmin, Ma Jun,et al. Numerical simulation of vortex induced vibration of a circular cylinder[J]. Noise and Vibration Control,2010, 30(5):51-55,59.
[4] BahmaniMH, AkbariMH. Effects of mass and damping ratioson VIV of a circular cylinder[J]. OceanEngineering,2010, 37(5):511-519.
[5] Williamson CHK, Roshko A. Vortexformationin the wake of an oscillating cylinder[J]. Journal of Fluids&Structures,1988,2(4):355-381.
[6] 邹琳,王华奥,汪秒,等. 串列双圆柱涡激振动响应的数值模拟[J]. 水动力学研究与进展(A辑),2018, 33(01):58-65.
ZOU Lin, WANG Huaao, WANG Miao,et al. Numerical simulation on vortex-induced vibration response of two cylinders in tandem arrangements[J]. Chinese Journal of Hydrodynamics,2018, 33(01):58-65.
[7] 康庄,张橙. 雷诺数对圆柱体涡激振动特性影响研究[J]. 华中科技大学学报(自然科学版),2017, 45(11):74-79.
KANG Zhuag, ZHANG Cheng. Impact of Reynolds number on vortex-induced vibration performance of cylinder[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2017, 45(11):74-79.
[8] 陈威霖,及春宁,许栋. 小间距比下串列双圆柱涡激振动数值模拟研究:振动响应和流体力[J]. 振动与冲击,2018,37(23):261-269.
CHEN Weilin, JI Chunning, XU Dong. Numerical simulations for VIVs of two tandem cylinders with small spacing ratios: vibration responses and hydrodynamic forces[J]. Journal of Vibration and Shock,2018,37(23):261-269.
[9] Zhang K, Katsuchi H,Zhou D,et al. Numerical simulation of vortex induced vibrations of a flexibly mounted wavy cylinder at subcritical Reynoldsnumber[J]. OceanEngineering,2017, 133:170-181.
[10] http://www.cnbeta.com/articles/394303.htm.
[11] 敬海泉,魏淼淼,彭浩轩,等. 一种基于涡激振动的无叶片风力发电机[P]. 中国:211524992U,2020.09.18.
JING Haiquan, WEI Miaomiao, PENG Haoxuan,et al. Bladeless wind power generator based on vortex-induced vibration[P]. China:211524992U,2020.09.18.
[12] 燕翔,郑正,练继建,等. 一种模块化流致振动发电装置[P]. 中国:210724466U,2020.06.09.
YAN Xiang, ZHENG Zheng, LIAN Jijian,et al. Modular flow-induced vibration power generation device[P]. China:210724466U,2020.06.09.
[13] Lam K, Lin Y F. Effects of wave length and amplitude of a wavy cylinder incross-flow at low Reynoldsnumbers[J]. Journal of Fluid Mechanics, 2009, 620(620):195-220.
[14] 汪秒. 串列双波浪型圆柱涡激振动数值研究[D]. 武汉:武汉理工大学,2016.
WANG Miao. Numerical investigation on vortex-induced vibrations of the tandem wavy cylinders[D]. Wuhan:Wuhan University of Technology,2016.

PDF(3535 KB)

429

Accesses

0

Citation

Detail

段落导航
相关文章

/