基于续尺度卷积网络的10MW漂浮式风力机筋腱损伤识别

许子非1,2,杨阳2,3,李春1,4,缪维跑1,张万福1,金江涛1,王鑫雨1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 183-189.

PDF(3446 KB)
PDF(3446 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 183-189.
论文

基于续尺度卷积网络的10MW漂浮式风力机筋腱损伤识别

  • 许子非1,2,杨阳2,3,李春1,4,缪维跑1,张万福1,金江涛1,王鑫雨1
作者信息 +

Tendon damage identification of 10 MW floating wind turbine based on CMS-CNN

  • XU Zifei1,2, YANG Yang2,3, LI Chun1,4, MIAO Weipao1, ZHANG Wanfu1, JIN Jiangtao1, WANG Xinyu1
Author information +
文章历史 +

摘要

为提升复杂环境中漂浮式风力机平台筋腱结构隐性损伤识别率,基于卷积神经网络(Convolutional Neural Network,CNN),提出连续多尺度卷积神经网络(Continues-Multi-Scale Convolutional Neural Network,CMS-CNN),建立“端到端”的损伤识别模型。为验证CMS-CNN方法的有效性,以10MW漂浮式风力机为研究对象,对损伤位置、程度进行故障诊断,结果表明:连续多尺度模型比传统多尺度的诊断结果更佳;横荡加速度受环境载荷影响较小,基于此响应信号所训练的CMS-CNN诊断模型更可靠;CMS-CNN模型可在筋腱结构微弱损伤时实现精准定位,亦能完成结构隐性损伤程度识别。

Abstract

A novel end-to-end Diagnosis model named Continuous-Multi-Scale Convolutional Neural Network (CMS-CNN) has been proposed to improve the rate of identification of structural damage on the damaged tendons in the float wind turbine platform. The effectiveness of the proposed CMS-CNN is examined by a 10MW float wind turbine model. The damaged locations and damaged degrees of the tendons in the 10MW float wind turbine are diagnosed by the proposed method. The results show that: The model considered more information by the continuous multi-scale coarse-grained procedure has better performance than the traditional multi-scale based model. The CMS-CNN model, using sway acceleration as the inputs, is more reliable than the model using the other accredited information. The CMS-CNN model can locate the damaged positions in the initial stages of damage evolution and diagnose both the locations and degrees of recessive damage of the tendons.

关键词

卷积神经网络 / 漂浮式风力机 / 故障诊断 / 结构损伤

Key words

Convolutional neural network / Floating wind turbine / fault diagnosis / structural damage

引用本文

导出引用
许子非1,2,杨阳2,3,李春1,4,缪维跑1,张万福1,金江涛1,王鑫雨1. 基于续尺度卷积网络的10MW漂浮式风力机筋腱损伤识别[J]. 振动与冲击, 2022, 41(3): 183-189
XU Zifei1,2, YANG Yang2,3, LI Chun1,4, MIAO Weipao1, ZHANG Wanfu1, JIN Jiangtao1, WANG Xinyu1. Tendon damage identification of 10 MW floating wind turbine based on CMS-CNN[J]. Journal of Vibration and Shock, 2022, 41(3): 183-189

参考文献

[1] 迟永宁,梁伟,张占奎,等.大规模海上风电输电与并网关键技术研究综述[J].中国电机工程学报,2016,36(14):3758-3771.
CHI Yongning,LIANG Wei,ZHANG Zhankui, et al. An Overview on Key Technologies Regarding Power Transmission and Grid Integration of Large Scale Offshore Wind Power[J]. Proceedings of the CSEE, 2016, 36(14): 3758-3771.
[2] 黄致谦,丁勤卫,李春,等.新型漂浮式风力机半潜平台抑制摇荡运动设计研究[J].中国电机工程报,2018,38(24):7295-7303+7456.
HUANG Zhiqian,DING Qinwei,LI Chun, et al. Design and Research on Suppression Swaying Motion of the New Semi-submersible Platform of Floating Wind Turbine[J]. Proceedings of the CSEE, 2018, 38(24): 7295-7303+7456.
[3] 方龙,李良碧,李荣富.海上漂浮式风力机支撑结构疲劳寿命研究[J].太阳能学报,2016,37(12):3184-3188.
FANG Long,LI Liangbi,LI Rongfu. Fatigue life research of support structure for floating offshore wind turbine[J]. Acta Energiae Solaris Sinica, 2016, 37(12): 3184-3188.
[4] 金鑫,钟翔,何玉林,等.漂浮特性对风力发电机振动影响[J].振动与冲击,2013(15):33-38.
JIN Xin,ZHONG Xiang,HE Yulin et al.Floating characteristics' impacton vibration of wind turbine [J]. Journal of Sound and Vibration. 32(15): 26-31.
[5] Yang Y, Musa B, Jin W, et al. Wind-wave coupling effects on the fatigue damage of tendons for a 10MW multi-body floating wind turbine[J]. Ocean Engineering,2020, 217: 107909.
[6] 叶舟,成欣,周国龙,等.漂浮式风力机平台动态响应的优化方法探讨[J].振动与冲击, 2016,000(003):20-26.
YE Zhou,CHENG Xin,ZHOU Guolong, et al. Optimization method for dynamic responses of floating offshore wind turbines [J]. Journal of Sound and Vibration. 2016, 000(003):20-26. [7] Ettefagh M M . Damage Identification of A TLP Floating Wind Turbine by Meta-Heuristic Algorithms [J]. China Ocean Engineering, 2015, 29(6):891-902.
[8] Begg S E , Fowkes N , Stemler T , et al. Fault detection in vibration systems: Identifying damaged moorings[J]. Ocean Engineering, 2018, 164(15):577-589.
[9] JAHANGIRI V , FATHI R, MOHAMMAD ETTEFAGH M, et al. TLP Structural Health Monitoring Based on Vibration Signal of Energy Harvesting System[J]. Latin American Journal of Solids & Structures, 2016, 13(5):897-915.
[10] Chandrasekaran S , Chithambaram T . Health monitoring of tension leg platform using wireless sensor networking: experimental investigations[J]. Journal of Marine Science and Technology, 2019, 24:60-72.
[11] MOHAMMAD A L Y , SHAHVERDI S, TARINEJAD R, et al. Structural Health Monitoring (SHM) of Offshore Jacket Platforms[C]// ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASME , Rotterdam, 2011.
[12] Jiang Q , Li T , Yao Y , et al. A method of characteristic impulse identification based on Laplace wavelet matching[C]// 2010 3rd International Congress on Image and Signal Processing. Yantai :IEEE, 2010.
[13] Hakim S J S , Razak H A . Modal parameters based structural damage detection using artificial neural networks - a review[J]. Smart structures and systems, 2014, 14(2):159-189.
[14] 陈保家,黄伟,李立军,等.最大重叠离散小波包变换边际谱特征在齿轮故障诊断中的应用[J].西安交通大学学报,2020,54(02):35-42.
CHEN Baojia,HUANG Wei,LI Lijun, et al. Application of Maximum Overlap Discrete Wavelet Packet Transform Marginal Spectrum Features in Gear Fault Diagnosis[J]. Journal of Xi'an Jiaotong University, 2020, 54(02): 35-42.
[15] Yang Y , Bashir M , Li C , et al. Investigation on mooring breakage effects of a 5 MW barge-type floating offshore wind turbine using F2A[J]. Ocean Engineering, 2021, 233(1): 108887
[16] Luo Y, Cheng Y, UZUNER Ö, et al. Segment convolutional neural networks (Seg-CNNs) for classifying relations in clinical notes[J]. Journal of the American Medical Informatics Association, 2017, 25(1):93-98.
[17] Kuo C C J. Understanding Convolutional Neural Networks with A Mathematical Model [J]. Journal of Visual Communication & Image Representation, 2016, 41:S1047320316302267.
[18] Jiang G Q, He H B, Yan J, et al. Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox [J] IEEE transaction on Industrial Electronics, 2019,66,(4):3196-3207.

PDF(3446 KB)

Accesses

Citation

Detail

段落导航
相关文章

/