楔形体匀速和自由落体水弹性砰击的半解析法求解

冯松1,高健2,陈毓珍3,孙哲1,张桂勇1,4

振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 190-198.

PDF(2120 KB)
PDF(2120 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 190-198.
论文

楔形体匀速和自由落体水弹性砰击的半解析法求解

  • 冯松1,高健2,陈毓珍3,孙哲1,张桂勇1,4
作者信息 +

Semi analytical solution to hydro-elastic slamming of wedge with constant velocity and free-falling body

  • FENG Song1, GAO Jian2, CHEN Yuzhen3, SUN Zhe1, ZHANG Guiyong1,4
Author information +
文章历史 +

摘要

针对二维弹性楔形体入水过程的流固耦合问题,提出一种基于耦合Wagner理论和模态叠加法的半解析解方法。结构湿表面的速度势基于Wagner理论求解并考虑了结构弹性影响。砰击压力根据伯努利方程求解,为提高求解精度考虑了伯努利方程中速度平方项。通过平均弹性速度修正模型推导出附加质量和阻尼矩阵,将其代入至固体动力学方程从而建立统一的流固耦合方程,耦合方程通过基于隐式的Newmark-β算法实现求解。通过计算楔形体垂直恒速和自由落体入水两种运动状态,并与基于半解析、数值和实验的文献结果进行了对比,验证了所提理论的可靠性。

Abstract

A semi-analytical solution based which couples Wagner theory and modal superposition method is proposed to investigate hydroelastic slamming of two-dimensional flexible wedges. The velocity potential on the wetted surface is solved based on Wagner theory and the hydroelasticity effect is considered. Slamming load is obtained through Bernoulli equation and the velocity square term is considered to improve the accuracy. The averaged elastic velocity is used to account the effect of hydroelasticity and forming the fluid added mass and damping matrix. The coupling equation is established by incorporating the fluid added mass and damping in the solid dynamic equation and solved by the implicitly Newmark-β scheme. Two types of wedge motion are simulated i.e. vertical impact with constant velocity and freefall motion. The proposed algorithm is proven to be reliable by comparison with semi-analytical method, numerical solutions and experimental results in the published studies.

关键词

入水 / 流固耦合 / 半解析解 / 水弹性砰击

Key words

Water entry
/ Fluid-Structure Interaction / Semi-analytical solution / Hydroelastic slamming

引用本文

导出引用
冯松1,高健2,陈毓珍3,孙哲1,张桂勇1,4. 楔形体匀速和自由落体水弹性砰击的半解析法求解[J]. 振动与冲击, 2022, 41(3): 190-198
FENG Song1, GAO Jian2, CHEN Yuzhen3, SUN Zhe1, ZHANG Guiyong1,4. Semi analytical solution to hydro-elastic slamming of wedge with constant velocity and free-falling body[J]. Journal of Vibration and Shock, 2022, 41(3): 190-198

参考文献

[1] KOROBKIN A A, GUÉRET R, MALENICA Š. Hydroelastic coupling of beam finite element model with Wagner theory of water impact[J]. Journal of Fluids and Structures, 2006, 22(4): 493–504.
[2] KHABAKHPASHEVA T I, KOROBKIN A A. Elastic wedge impact onto a liquid surface: Wagner’s solution and approximate models[J]. Journal of Fluids and Structures, 2013, 36: 32–49.
[3] LU C, HE Y, WU G. Coupled analysis of nonlinear interaction between fluid and structure during impact[J]. Journal of Fluids and Structures, 2000, 14(1): 127–146.
[4] PIRO D J, MAKI K J. Hydroelastic analysis of bodies that enter and exit water[J]. Journal of Fluids and Structures, 2013, 37: 134–150.
[5] SUN Z, ZHANG G, ZONG Z, et al. Numerical analysis of violent hydroelastic problems based on a mixed MPS-mode superposition method[J]. Ocean Engineering, 2019, 179(May 2018): 285–297.
[6] 卢炽华, 何友声. 二维弹性结构入水冲击工程中的流固耦合效应[J]. 力学学报, 2000, 32(2):129-140.
LU Chi-hua, HE You-sheng. Fluid-solid coupling effect of two-dimensional elastic structure in water impact engineering[J]. Acta Mechanica Sinica, 2000, 32(2):129-140.
[7] 杨衡,孙龙泉,龚小超,等.弹性结构入水砰击载荷特性三维数值模拟研究[J].振动与冲击,2014,33(19):28-34.
YANG Heng,SUN Long-quan,GONG Xiao-chao,et al. 3D numerical simulation of slamming load character for water entry of an elastic structure[J]. Journal of Vibration and Shock, 2014,33(19):28-34.
[8] 王加夏,陈月,彭丹丹,刘昆.砰击载荷下三维变形结构动态响应的数值模拟[J].舰船科学技术,2019,41(9):8-14.
WANG Jia-xia, CHEN Yue, PENG Dan-dan, et al. Dynamic response of a 3D flexible structure due to the slamming impact loading[J]. Ship Science and Technology, 2019,41(9):8-14.
[9] Hassoon O , Tarfaoui M , Alaoui A E M . An experimental investigation on dynamic response of composite panels subjected to hydroelastic impact loading at constant velocities[J]. Engineering Structures, 2018, 153:180-190.
[10] PANCIROLI R, ABRATE S, MINAK G, et al. Hydroelasticity in water-entry problems: Comparison between experimental and SPH results[J]. Composite Structures, 2012, 94(2): 532–539.
[11] 王玲,朱仁庆,李红艳.三维对称楔形体入水的水弹性力学分析[J].舰船科学技术,2018,40(3):19-25.
WANG Ling, ZHU Ren-qing, LI Hong-yan. Hydroelasticity analysis of 3D symmetrical wedge water entry[J]. Ship Science and Technology, 2018, 40(3): 19-25.
[12] 骆寒冰,刘鑫,董德龙,等.铝制加筋板楔形体入水砰击模型实验研究[J].水动力学研究与进展A辑,2014,29(4):460-468.
LUO Han-bing, LIU Xin, DONG De-long, et al. Experimental investigation of water impact of one free-drop wedge with stiffened aluminum panels[J]. Chinese Journal of Hydrodynamics, 2014,29(4):460-468.
[13] WAGNER H. Uber Stoss- und Gleitvorgange an der Oberflache von Flussigkeiten.[J]. Zeitschrift fur angewandte Mathematik und Mechanik, 1932, 12(August): 193–215.
[14] FALTINSEN O. Water entry of a wedge by hydroelastic orthotropic plate theory[J]. Journal of Ship Research, 1999, 43(3): 180–193.
[15] 于鹏垚,王天霖,赵勇,等. 二维楔形体入水冲击的水弹性分析[J]. 哈尔滨工程大学学报,2019, 40(4): 689–695.
YU Peng-yao,WANG Tian-lin,ZHAO Yong, et al. Water entry of 2-D wedge by hydroelastic theory[J]. Journal of Harbin Engineering University, 2019, 40(4): 689–695.
[16] STENIUS I, ROSÉN A, KUTTENKEULER J. Hydroelastic interaction in panel-water impacts of high-speed craft[J]. Ocean Engineering, 2011, 38(2–3): 371–381.
[17] YU P, LI H, ONG M C. Hydroelastic analysis on water entry of a constant-velocity wedge with stiffened panels[J]. Marine Structures, 2019, 63(October 2018): 215–238.
[18] FALTINSEN O M, KVÅLSVOLD J, AARSNES J V. Wave impact on a horizontal elastic plate[J]. Journal of Marine Science and Technology, 1997, 2(2): 87–100.
[19] 于鹏垚,赵勇,王天霖,等. 基于半解析砰击模型的弹性楔形体入水冲击分析[J]. 上海交通大学学报,上海交通大学学报,2019, 53(2): 179-187.
YU Peng-yao, ZHAO Yong, WANG Tian-lin, et al. Water entry of an elastic wedge based on a semi-analytical slamming mode[J]. Journal of Shanghai Jiao Tong University, 2019, 53(2): 179-187.
[20] PANCIROLI R, PORFIRI M. Analysis of hydroelastic slamming through particle image velocimetry[J]. Journal of Sound and Vibration, 2015, 347: 63–78.
[21] SHAMS A, PORFIRI M. Treatment of hydroelastic impact of flexible wedges[J]. Journal of Fluids and Structures, 2015, 57: 229–246.
[22] KOROBKIN A A. Analytical models of water impact[J]. European Journal of Applied Mathematics, 2004, 15(6): 821–838.
[23] WANG S, GUEDES SOARES C. Simplified approach to dynamic responses of elastic wedges impacting with water[J]. Ocean Engineering, 2018, 150(October 2017): 81–93.
[24] QIN Z, BATRA R C. Local slamming impact of sandwich composite hulls[J]. International Journal of Solids and Structures, 2009, 46(10): 2011–2035.
[25] KOROBKIN A. Water impact problems in ship hydrodynamics[C]//Advances in Fluid Mechanics. Computational Mechanics Publ, Southampton, 1996, 5: 323–371.
[26] KHAYYER A, GOTOH H, FALAHATY H, et al. Towards development of enhanced fully-Lagrangian mesh-free computational methods for fluid-structure interaction[J]. Journal of Hydrodynamics, 2018, 30(1): 49–61.
[27] FOUREY G, HERMANGE C, LE TOUZÉ D, et al. An efficient FSI coupling strategy between Smoothed Particle Hydrodynamics and Finite Element methods[J]. Computer Physics Communications, 2017, 217: 66–81.
[28] OGER G, GUILCHER P M, JACQUIN E, et al. Simulations of hydro-elastic impacts using a parallel SPH model[J]. International Journal of Offshore and Polar Engineering, 2010, 20(3): 181–189.
[29] MAKI K J, LEE D, TROESCH A W, et al. Hydroelastic impact of a wedge-shaped body[J]. Ocean Engineering, 2011, 38(4): 621–629.

PDF(2120 KB)

357

Accesses

0

Citation

Detail

段落导航
相关文章

/