基于改进一维卷积神经网络的滚动轴承故障识别

王琦,邓林峰,赵荣珍

振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 216-223.

PDF(2880 KB)
PDF(2880 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 216-223.
论文

基于改进一维卷积神经网络的滚动轴承故障识别

  • 王琦,邓林峰,赵荣珍
作者信息 +

Fault recognition of rolling bearing based on improved 1D convolutional neural network

  • WANG Qi, DENG Linfeng, ZHAO Rongzhen
Author information +
文章历史 +

摘要

滚动轴承的故障识别对于防止旋转机械系统故障恶化并保证其安全运行具有重要意义。针对现有智能诊断模型参数多、识别效率低的问题,提出一种基于改进一维卷积神经网络的滚动轴承故障识别(FRICNN–1D)方法。通过引入1×1卷积核增强一维卷积神经网络模型的非线性表达能力;并用全局平局池化层代替传统卷积神经网络中的全连接层,以降低模型参数和计算量,且防止过拟合现象。实验结果表明,该方法可以准确识别滚动轴承不同故障状态,具有一定的工程实际应用潜力。

Abstract

Fault recognition of rolling bearings is largely significant to prevent the deterioration of the rotating machinery system and to guarantee its safe operation. Aiming at the problem that the used intelligent diagnosis models usually have too many parameters and low recognition efficiency, a rolling bearing fault recognition method based on improved one-dimensional convolutional neural network(FRICNN–1D) is proposed in this paper. For one thing, the 1×1 convolution kernel is introduced to enhance the nonlinear expression ability of the one-dimensional convolutional neural network model; for another, the global average pooling layer is used to replace the fully connection layer in the traditional convolution neural network, so as to reduce the model parameters and the amount of calculation and prevent over fitting phenomenon. The experimental results show that the proposed method can accurately recognize different fault status of a real rolling bearing and has particular potential in engineering application.

关键词

一维卷积神经网络 / 滚动轴承 / 故障识别

Key words

one-dimensional convolutional neural network / rolling bearing / fault recognition

引用本文

导出引用
王琦,邓林峰,赵荣珍. 基于改进一维卷积神经网络的滚动轴承故障识别[J]. 振动与冲击, 2022, 41(3): 216-223
WANG Qi, DENG Linfeng, ZHAO Rongzhen. Fault recognition of rolling bearing based on improved 1D convolutional neural network[J]. Journal of Vibration and Shock, 2022, 41(3): 216-223

参考文献

[1] Zhang J, Sun Y, Guo L, et al. A new bearing fault diagnosis method based on modified convolutional neural networks[J]. Chinese Journal of Aeronautics, 2020, 33(2): 439-447.
[2] 杨平, 苏燕辰, 张振. 基于卷积胶囊网络的滚动轴承故障诊断研究[J]. 振动与冲击, 2020, 39(4): 55-62+68.
Yang Ping, Su Yanchen, Zhang Zhen. A study on rolling bearing fault diagnosis based on convolution capsule network[J]. Journal of Vibration and Shock, 2020, 39(4): 55-62+68.
[3] Ince T. Real-time broken rotor bar fault detection and classification by shallow 1D convolutional neural networks[J]. Electrical Engineering, 2019, 101(2): 599-608.
[4] Wen L, Li X, Gao L, et al. A transfer convolutional neural network for fault diagnosis based on ResNet-50[J]. Neural Computing and Applications, 2020, 32(10): 6111-6124.
[5] Tamilselvan P, Wang P. Failure diagnosis using deep belief learning based health state classification[J]. Reliability Engineering & System Safety, 2013, 115: 124-135.
[6] 郭亮, 高宏力, 张一文, 等. 基于深度学习理论的轴承状态识别研究[J]. 振动与冲击, 2016, 35(12): 166-170.
Guo Liang, Gao Hongli, Zhang Yiwen, et al. Research on bearing condition monitoring based on deep learning[J]. Journal of Vibration and Shock, 2016, 35(12): 166-170.
[7] Liu H, Zhou J, Zheng Y, et al. Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders[J]. ISA Transactions, 2018, 77(6): 167-178.
[8] Zeng X, Liao Y, Li W. Gearbox fault classification using S-transform and convolutional neural network[C]. //Proceedings of the International Conference on Sensing Technology, Nanjing, 2016: 1-5.
[9] 李恒, 张氢, 秦仙蓉, 等. 基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J]. 振动与冲击, 2018, 37(19): 124-131.
Li Heng, Zhang Qing, Qin Xianrong, et al. Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network[J]. Journal of Vibration and Shock, 2018, 37(19): 124-131.
[10] Hoang D, Kang H. Rolling element bearing fault diagnosis using convolutional neural network and vibration image[J]. Cognitive Systems Research, 2019, 53: 42-50.
[11] Peng D, Liu Z, Wang H, et al. A novel deeper one-dimensional CNN with residual learning for fault diagnosis of wheelset bearings in high-speed trains[J]. IEEE Access, 2019, 7: 10278-10293.
[12] 张康, 陶建峰, 覃程锦, 等. 随机丢弃和批标准化的深度卷积神经网络柴油机失火故障诊断[J]. 西安交通大学学报, 2019, 53(8): 159-166.
Zhang Kang, Tao Jianfeng, Qin Chengjin, et al. Diesel engine misfire diagnosis with deep convolutional neural network using dropout and batch normalization[J]. Journal of Xi'an Jiaotong University, 2019, 53(8): 159-166.
[13] Lin M, Chen Q, Yan S. Network in network[J/OL]. arXiv preprint, arXiv:1312.4400, 2013.
[14] 胡茑庆, 陈徽鹏, 程哲, 等. 基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J]. 机械工程学报, 2019, 55(7): 9-18.
Hu Niaoqing, Chen Huipeng, Cheng Zhe, et al. Fault diagnosis for planetary gearbox based on EMD and deep convolutional neural networks[J]. Journal of Mechanical Engineering, 2019, 55(7): 9-18.
[15] 梁杰, 陈嘉豪, 张雪芹, 等. 基于独热编码和卷积神经网络的异常检测[J]. 清华大学学报(自然科学版), 2019, 59(7): 523-529.
Liang Jie, Chen Jiahao, Zhang Xueqin, et al. One-hot encoding and convolutional neural network based anomaly detection[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(7): 523-529.
[16] 宋建锋, 韦玥, 苗启广, 等. 压缩激励机制驱动的尿液细胞图像分类算法[J]. 西安电子科技大学学报, 2020, 47(02): 39-45+59.
Song Jianfeng, Wei Yue, Miao Qiguang, et al. Urine cell image classification algorithm based on the squeeze and excitation mechanism[J]. Journal Of Xidian University, 2020, 47(2): 39-45+59.
[17] Loparo K A. Case Western Reserve University Bearing Data Center Seeded Fault Test Data [DB/OL]. [2020-07-11]. http://csegroups.case.edu/bearingdatacenter/pages/download-data-file.
[18] Ma S, Cai W, Liu W, et al. A lighted deep convolutional neural network based fault diagnosis of rotating machinery[J]. Sensors, 2019, 19(10): No. 2381.
[19] Zhang W, Peng G, Li C, et al. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017, 17(2): No. 425.
[20] 曲建岭, 余路, 袁涛, 等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报, 2018, 39(7): 134-143.
Qu Jianling, Yu Lu, Yuan Tao, et al. Adaptive fault diagnosis algorithm for rolling bearings based on one-dimensional convolutional neural network[J]. Chinese Journal of Scientific Instrument, 2018, 39(7): 134-143.
[21] 周奇才, 刘星辰, 赵炯, 等. 旋转机械一维深度卷积神经网络故障诊断研究[J]. 振动与冲击, 2018, 37(23): 31-37.
Zhou Qicai, Liu Xingchen, Zhao Jiong, et al. Fault diagnosis for rotating machinery based on 1D depth convolutional neural network[J]. Journal of Vibration and Shock, 2018, 37(23): 31-37.

PDF(2880 KB)

Accesses

Citation

Detail

段落导航
相关文章

/