从声学角度出发,参考稳态波衰减法,综合考虑喷管辐射损失及对流损失,建立固体火箭发动机喷管阻尼声能共振数值计算方法,通过与阻抗管法测量的试验结果对比验证仿真方法,并探究喷管喉径、监测点位置、声源强度及平均压力对喷管阻尼的影响,结果表明:数值计算结果与试验结果吻合较好,表明本文建立的仿真方法有效;喷管阻尼随喉径的增大而增大,进而使声腔内形成稳定驻波时的压力振幅降低。传声特性分析结果表明,喷管喉径增大,声功率透射系数提高,使喷管阻尼增加;监测点位置及声源强度不会影响喷管阻尼大小,但会影响压力振幅大小;喷管阻尼及压力振幅均与平均压力大小无关。
Abstract
From the perspective of acoustics, referring to the steady-state wave attenuation method, comprehensively considering the nozzle radiation loss and convection loss, the acoustic energy resonance numerical calculation method for solid rocket motor nozzle damping is established, and the simulation method is verified by comparing with the test results measuring by impedance tube method. The influence of nozzle throat diameter, monitoring point location, sound source intensity and average pressure on nozzle damping is explored. The results show that the numerical results are in good agreement with the experimental results, which shows that the simulation method established in this paper is effective; The damping of nozzle increases with the increase of throat diameter, which reduces the pressure amplitude when the steady standing wave is formed in the cavity. The analysis results of the sound transmission characteristics show that the nozzle throat diameter increases, the sound power transmission coefficient increases, and the nozzle damping increases; The position of the monitoring point and the intensity of the sound source have no effect on the nozzle damping, but affect the pressure amplitude; Both damping and pressure amplitude have nothing to do with the average pressure.
关键词
固体火箭发动机 /
喷管阻尼 /
声能共振数值计算方法
{{custom_keyword}} /
Key words
solid rocket motor /
nozzle damping /
numerical calculation method of acoustic energy resonance
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王宁飞,张峤,李军伟,等.固体火箭发动机不稳定燃烧研究进展[J].航空动力学报,2011(06):213-222.
WANG Ning-fei, ZHANG Qian, LI Jun-wei, et al. Progress of investigation on combustion instability of solid rocket motors[J]. Journal of aerospace power,2011(06):213-222.
[2] Blomshield, F. S. Lessons Learned in Solid Rocket Combustion Instability[R]. Cincinnati:AIAA, 2007.
[3] Fabignon, Y., Dupays, J. Instability and Pressure Oscillations in Solid Rocket Motors[J]. Aerospace Science and Technology, 2003, 7(3):191-200.
[4] 陈晓龙,何国强,刘佩进,等.固体火箭发动机燃烧不稳定的影响因素分析和最新研究进展[J].固体火箭技术,2009(06):14-19+24.
CHEN Xiao-long, HE Guo-qiang, LIU Pei-jin, et al. Analysis of influencing factors of combustion instability in SRM and current progress[J]. Journal of solid rocket technology, 2009(06):14-19+24.
[5] 刘佩进,金秉宁,李强.战术导弹固体发动机燃烧不稳定研究概述[J].固体火箭技术,2012(04):446-449.
LIU Pei-jin, JIN Bing-ning, LI Qiang. Asurvey of combustion instability in tactical SRM[J]. Journal of solid rocket technology, 2012(04):446-449.
[6] 苏万兴.大长径比固体火箭发动机不稳定燃烧预示及抑制方法研究[D].北京理工大学,2015.
SU Wan-xing. Prediction and suppression methods of combustion instability in large aspect ratio solid rocket motors[D]. Beijing institute of technology,2015.
[7] Crocco, L., Sirignano, W. A. Behavior of Supercritical Nozzles under Three-dimensional Oscillatory Conditions[R]. Advisory Group for Aerospace Research and Development Paris, 1967, Report NO. AGARD-ograph-117.
[8] Zinn, B. T. Longitudinal Mode Acoustic Losses in Short Nozzles[J]. Journal of Sound and Vibration, 11972, 22(1):93-105.
[9] Zinn, B. T. Nozzle Damping in Solid Rocket Instabilities[J]. AIAA Journal, 1973, 11(11):1492-1497.
[10] Janardan, B. A., Daniel, B. R., Zinn, B. T. Damping of Axial Instability by Small-scale Nozzles under Cold Flow Conditions[J]. Journal of Spacecraft and Rockets, 1974, 11(12):812-820.
[11] Janardan, B. A., Daniel, B. R., Zinn, B. T. Scaling of Rocket Nozzle Admittances[J]. AIAA Journal, 1975, 13(7): 918-923.
[12] 孙兵兵,李军伟,苏万兴,等.温度及压强对火箭发动机喷管阻尼的影响研究[J].推进技术,2016,37(05):844-851.
SUN Bing-bing, LI Jun-wei, SU Wan-xing, et al. Numerical study on effects of temperature and pressure on nozzle damping characteristics inrocket motor[J]. Journal of propulsion technology. 2016, 37(05):844-851.
[13] 孙维申.固体火箭发动机不稳定燃烧[M].北京:北京工业出版社,1988.
SUN Wei-shen. Combustion instability of solid rocket motors[J]. Beijing: Beijing industry press, 1988.
[14] Zinn, B. T. Nozzle Damping in Solid Rocket Instabilities[J]. AIAA Journal, Vol.11, No.11, 1973.
[15] 何琳,朱海潮,邱小军,等.声学理论与工程应用[M].北京:科学出版社,2006.
HE Lin, ZHU Hai-chao, QIU Xiao-jun, et al. Acoustics theory and engineering applications[M]. Beijing: Science press, 2006.
[16] French, J. C. Nozzle Acoustic Dynamics and Stability Modeling[J]. Journal of Propulsion and Power, 2011, 27(6):1266-1275.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}