基于混沌理论,将邻近隧道爆破、上跨坑道爆破作用下既有隧道振动响应时间序列进行相空间重构,通过吸引子、Lyapunov指数、关联维数等核心参量计算,分析隧道爆破振动响应信号混沌特征。经过计算,邻近隧道爆破作用下既有隧道振动响应信号相空间重构后具有奇怪吸引子,且Lyapunov指数均大于0,可判定其具有混沌特征;上跨坑道爆破作用下既有隧道振动响应信号的Lyapunov指数也均大于0,表明其也具有混沌特征。研究表明,隧道爆破振动信号具有混沌特征,随着钻爆作业面与既有隧道爆心距减小,值变大,隧道爆破振动响应的混沌特征增强,应更加强钻爆参数的合理优化和爆破振动实时监测,确保施工质量和爆破安全。
Abstract
Based on the chaos theory, the phase space reconstruction of the vibration response time series of the existing tunnel under the action of the blasting of the adjacent tunnel and the blasting of the upper span tunnel was carried out by using the attractor and Lyapunov The core parameters, such as index and correlation dimension, were calculated to analyze the chaotic characteristics of tunnel blasting vibration response signal. After calculation, the phase space reconstruction of the vibration response signal of the existing tunnel under the blasting action of the adjacent tunnel has strange attractor, and the Lyapunov index is greater than 0. It can be judged that it has chaotic characteristics. The Lyapunov index of the vibration response signal of the existing tunnel under the blasting action of the upper span tunnel is greater than 0. It shows that it also has chaotic characteristics. The research shows that the blasting vibration signal of the tunnel has chaotic characteristics. As the blasting distance between the drilling and blasting working face and the existing tunnel decreases, the value becomes larger, the chaotic characteristic of the tunnel blasting vibration response increases, and the rational optimization of blasting parameters and blasting should be strengthened. Vibration real-time monitoring to ensure construction quality and blasting safety.
关键词
隧道爆破 /
爆破振动 /
混沌 /
相空间重构
{{custom_keyword}} /
Key words
tunnel blasting /
blasting vibration /
chaos /
phase space reconstruction
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 钟冬望,吴亮,余刚. 邻近隧道掘进爆破对既有隧道的影响[J]. 爆炸与冲击,2010,30(05):456-462.
ZHONG Dong-wang,WU Liang,YU Gang.Effect of tunneling blasting on an existing adjacent tunnel[J]. Explosion and Shock Waves,[1]2010,30(05):456-462.
[2] 吴亮,钟冬望. 不同布置条件下邻近隧道掘进爆破对既有隧道的影响[J]. 煤炭学报,2009,34(10):1339-1343.
WU Liang,ZHONG Dong-wang. Effect of tunneling blasting on the existing adjacent tunnel under different conditions[J]. Journal of China Coal Society,2009,34(10):1339-1343.
[3] 蒋楠,周传波. 爆破振动作用下既有铁路隧道结构动力响应特性[J].中国铁道科学,2011,32(06):63-68.
JIANG Nan,ZHOU Chuan-bo.Dynamic Response characteristic of existing railway tunnel structure subjected to bl-tasting vibration[J]. China Railway Science, 2011,32(06):63-68.
[4] 刘冬,高文学,孙宝平. 既有隧道扩建爆破振动数值模拟研究[J].岩土力学,2016,37(10):3011-3016.
LIU Dong, GAO Wen-xu,SUN Bao-pin. Numerical simulation of blasting vibration on existing tunnel extension[J]. Rock and Soil Mechanical,2016,37(10):3011-3016.
[5] 叶培旭,杨新安,凌保林. 近距离交叉隧洞爆破对既有隧道的振动影响[J].岩土力学,2011,32(02):537-541.
YE Pei-xu,YANG Xin-an,LING Bao-lin. Vibration effects on existing tunnel induced by blasting of an adjacent cross tunnel[J]. Rock and Soil Mechanics, 2011,32(02):537-541.
[6] 杨明宇,王晓宇,冮凯. 新建隧道爆破开挖对既有隧道影响及控制技术研究[J].北方交通,2019(01):77-80.
YANG Ming-yu,WANG XIAO-yu,Jiang Kai. Research oninfluence and construction technology of newly-built tunnel blasting excavation on existing tunnel[J]. Northern Communications, ,2019(01):77-80.
[7] 曲广建,龙源,朱振海. 数字爆破测振[M].北京:兵器工业出版社,2015.
QU G J. Digital Blasting Vibration Measurement[M]. Beijing: Weapons Industry Press, 2015.
[8] 韩敏,任伟杰,李柏松.混沌时间序列分析与预测研究综述[J]. 信息与控制,2020,49(01):24-35.
HAN Min,REN Wei-jie,LI Bo-song.Survey of chaotic time series analysis and prediction[J].Information and Control,[8]2020,49(01):24-35.
[9] F. Takens. Determing strange attractors in turbulence[J]. Lecture notes in Math, 1981, 898: 361-381.
[10] H. S. Kim, R. Eykholt, J. D. Salas. Nonlinear dynamics, delay times and embedding windows[J]. Physica D: Nonlinear Phenomena, 1999, 127: 48-60.
[11] W. A. Brock, W. D. Dechert, J. A. Scheinkman, et al. A test for independence based on the correlation dimension[J]. Econometric Reviews,1996, 15(3): 197-235.
[12] Grassberger P, Procaccia I.Measuring the strangeness of strange attractors[J]. : Nonlinear Phenomena,1983,9:189-208.
[13] 丁凯.基于非线性方法的装甲目标声信号特征提取与识别技术研究[D]. 解放军理工大学,2013.
[14] A. Wolf, J. B. Swift, H. L. Swinney, et al. Determining Lyapunov exponents from a time series[J]. Physica D: Nonlinear Phenomena, 1985: 285-317.
[15] 吕金虎,陆君安等.混沌时间序列分析及其应用[M]. 武汉:武汉大学出版社,2002.
LV Jin-hu, LU Jun-an, et al.Chaotic time series analysis and application[M]. Wuhan: Wuhan University Press, 2002.
[16] 阮江军,杨秋玉,黄道春. 高压断路器机械振动信号混沌吸引子形态特性[J].电力自动化设备,2020,40(03):187-193.
RUAN Jiang-jun, YANG Qiu-yu,HUANG Dao-chun. Shape characteristic analysis of chaotic attractor for mechanical vibration signal of high-voltage circuit breaker[J]. Electric Power Automation Equipment,2020,40(03):187-193.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}