船舶机电设备的抗冲击性能是考核设备战时生命力的重要指标。文中采用冲击试验机试验和数值仿真方法研究了船舶中压交流真空断路器的抗冲击性能。研究结果表明:原样机在冲击试验后出现了由于结构变形引起的技术特性参数变化(断路器一相超程过小);样机模型的应力危险区域主要存在于底板和支撑底座,对该部分结构采用数值仿真方法(频域载荷)改进模型,改进后模型满足抗冲击性能要求;时域载荷作用下断路器模型的瞬态响应特性呈现为垂向响应较为剧烈,横向、纵向较为缓和,且在0.015s内响应最为剧烈,于0.15s趋于稳定;两种载荷作用下的模型响应结果较为接近,其中频域载荷应力值统计结果整体略大于时域载荷,选用频域载荷仿真计算更为保守。
Abstract
Anti-shock capability of marine electromechanical equipment is an important indicator for assessing the reliability in wartime. In this paper, the impact machine test and numerical simulation method were used to study the anti-shock capability of the breaker. The results show that the impact test has changed three-phase overtravel of breaker due to structural deformation. The high stress area of the model mainly exists in the bottom plate and supporting base, using numerical simulation method (frequency domain load) to improve the model structure, and the improved structure fulfil requirements.The transient response characteristics under the time domain load show that the vertical response is relatively sharp, the horizontal and vertical directions are relatively gentle, and the response has dramatic value in 0.015s, and tends to be stable at 0.15s. The model response results under the two loads are relatively close. The statistical results of the frequency domain load stress value are slightly larger than the time domain load. The frequency domain load simulation is more conservative. The research results are generally applicable to the anti-shock research of similar marine equipment.
关键词
船舶断路器 /
抗冲击性能 /
数值仿真 /
有限元分析
{{custom_keyword}} /
Key words
marine circuit breaker /
anti-shock capability /
numerical simulation /
the finite element analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]王贡献,褚德英,张磊等.船舶设备冲击试验机研究进展[J].振动与冲击,2007(02):152-159+183.
Wang Gongxian, Zhu Deying, Zhang Lei, et al. Research Progress of Ship Equipment Impact Tester[J]. Journal of Vibration and Shock,2007(02):152-159+183.
[2] 军用设备环境试验方法 冲击试验:GJB 150.182—1986[S].北京:国防科学技术工业委员会,1986.
[3] 舰船环境条件要求 机械环境:GJB 1060.1—1991[S] 北京:国防科学技术工业委员会,1991.
[4]Guilin Chen, Yong Wu, Qijun Pan, et al. Analysis and Optimization of Impact Condition of Power Conditioning Inverter Based on ANSYS[J]. MATEC Web of Conferences,2018,232.
[5]GUO J, SUN Z Z, HUANG S Z, et al. Shock resistance evaluation method of ship air bottle-base connection structure[J]. Chinese Journal of Ship Research, 2018,13(3):90-96.
[6]汪玉,华宏星著. 舰船现代冲击理论及应用. 北京:科学出版社, 2005.12.
[7]Lei, H.; Jianguo, Y.; Mingchao, Z.; Yonghua Y. Calculation and Analysis of Anti-shock of a Marine Diesel Engine Turbocharger[J]. Lecture Notes in Mechanical Engineering,2019,249-258.
[8]杨春鹏,张毅,孟庆芹.基于正负三角波冲击谱和有限元计算的抗冲击设计方法[J].雷达与对抗,2019,39(02):41-44.
Yang Chunpeng, ZhangYi, Meng Qingqin. Shock resistance design method based on positive and negative triangle wave shock spectrum and finite element calculation[J]. Radar and Countermeasures,2019,39(02):41-44.
[9]]于福临,郭君,姚熊亮等.舰船管路冲击响应的离散时间传递矩阵法[J].哈尔滨工业大学学报,2016,48(02):179-183.
Yu Fulin, Guo Jun, Yao Xiongliang, et al. Shock response analysis of naval pipe system based on discrete-time transfer matrix method[J]. Journal of Harbin Institute of Technology, 2016,48(02):179-183.
[10]童水光,魏超,费钟秀,等. 船用齿轮箱系统抗冲击特性数值仿真[J]. 2012, 31(12): 79-85.
TONG Shuiguang, WEI Chao, FEI Zhongxiu. Numerical simulation for anti-shock characteristic of a marine gearbox system[J]. Journal of Vibration and Shock,2012,31(12):79-85.
[11]吕治军. 舰载光电跟踪设备抗冲击性能研究[D].中国科学院研究生院(光电技术研究所),2016.
Lv Zhijun. Research on anti-shock performance of shipborne optoelectronic tracking equipment[D]. Graduate University of Chinese Academy of Sciences (Institute of Optoelectronic Technology), 2016.
[12]Wang X X, Li X T, Ma Xiaohui, et al. Numerical analysis on spectrum dip characteristics of shock response spectrum of submarine equipment[J]. Zhongguo Jianchuan Yanjiu, 2019, 14(3) : 31-37.
[13]王乾勋,冯麟涵,杜志鹏等.船舶典型结构冲击仿真模型前处理方法研究[J].造船技术,2016(04):12-18+23.
Wang Qianxun, Feng Linghan, Du Zhipeng, et al. Research on the Pre-processing Method of Ship's Typical Structure Impact Simulation Model[J]. Marine Technology, 2016(04):12-18+23.
[14] 计晨,汪玉,赵建华,等. 舰用柴油机抗冲击性能频域分析[J].振动与冲击 , 2010, 29(11): 171-176.
JI Chen, WANG Yu, ZHAO Jianhua, et al. Frequency domain analysis of anti-shock performance of marine diesel engine[J]. Journal of Vibration and Shock, 2010,29(11):171-176.
[15]王乾勋,闫明,金昊,等.船舶电器设备中簧片式触点开关的冲击破坏潜能分析[J].机械科学与技术, 2017,36(06):890-894.
WANG Qianxun,YAN Ming,JIN Hao, et al. Analysis of potential shock damage for reed contact switch of naval ships’electrical equipment[J]. Mechanical Science and Technology for Aerospace Engineering, 2017,36(06):890-894.
[16]BV0430-85 German Wehrmacht Ship Construction Specification-Impact Safety[S], Koblenz: Federal German Defense Equipment Technology and Procurement Agency,1987.
[17]于水生,卢玉斌,蔡勇.工程材料的应变率效应及其统一模型[J].固体力学学报,2013 (增刊1):63-68.
YU Shuisheng,LU Yubin,CAI Yong. The strain-rate effect of engineering materials and its unified model[J]. Chinese Journal of Solid Mechanics, 2013(Suppl.1):63-68.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}