不同迎流攻角下正三角柱流致振动数值模拟研究

卫昱含,及春宁,许栋,陈威霖

振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 278-286.

PDF(2797 KB)
PDF(2797 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 278-286.
论文

不同迎流攻角下正三角柱流致振动数值模拟研究

  • 卫昱含,及春宁,许栋,陈威霖
作者信息 +

Numerical simulation for flow-induced vibration of regular triangular column under different angles of attack

  • WEI Yuhan, JI Chunning, XU Dong, CHEN Weilin
Author information +
文章历史 +

摘要

采用嵌入式迭代浸入边界法对不同迎流攻角下正三角柱的流致振动进行了二维数值模拟研究,其中迎流攻角为α=0°-60°(α=60°时三角柱顶点迎流),雷诺数为Re=100,质量比为m*=5和折合流速为Ur=2-20。详细分析了不同迎流攻角下横流向振幅、振动频率、水动力系数、升力与位移的相位差以及尾涡模式随折合流速变化的情况。结果发现,三角柱振动随迎流攻角表现为三种不同的振动模式:涡振-驰振联合模式(α=0°-15°)、涡振-驰振分离模式(α=20°-22.5°)和涡振模式(α=25°-60°)。选取α=0°、20°、60°三个迎流攻角详细论述了不同模式下三角柱的振动特性。此外,还发现虽然三角柱在迎流攻角α=0°时关于来流方向对称,三角柱的平衡位置在某些折合流速下出现了偏移,该现象与升力中偶次谐波分量的出现有关。最后,应用准稳态分析得到了驰振出现的攻角范围,结果与数值模拟的情况吻合较好,说明准稳态分析可以准确预测三角柱驰振的攻角范围。

Abstract

The flow induced vibration of a equilateral triangular prism with different angles of attack is studied by using the immersed boundary method. The angles of attack is α=0°-60° (a vertex of the triangular prism faces the flow when α=60°), the Reynolds number is Re=100, the mass ratio is m*=5, and the reduced velocity is Ur=2-20. The transverse vibration amplitude, the vibration frequency, the hydrodynamic coefficients, the phase difference between the lift and displacement and the wake pattern are investigated with different angles of attack and reduced velocities. Results show that there are three different vibration modes: the combined vortex-induced vibration (VIV) and galloping in the range of α=0°-15°, the separated VIV and galloping at α=20°-22.5°, and VIV in the range of α=25°-60°. Three angles of attack of α=0°, 20° and 60° are selected in this paper to discuss the flow-induced vibration characteristics of the triangular prism. It is found that the lateral shift of the balanced position of the triangular prism is non-zero at some Ur when α=0°, and the occurrence of this phenomenon is related to the even harmonic component of the lift. Moreover, the α range of galloping is further investigated by using the quasi-steady theory. The results show good agreement with the numerical simulation, which indicates that the quasi-steady theory can accurately predict the α range of galloping of the triangular prism.

关键词

流致振动 / 正三角柱 / 平衡位置 / 准稳态分析

Key words

Flow-induced vibration / Equilateral triangular prism / The balanced position / Quasi-steady theory

引用本文

导出引用
卫昱含,及春宁,许栋,陈威霖. 不同迎流攻角下正三角柱流致振动数值模拟研究[J]. 振动与冲击, 2022, 41(3): 278-286
WEI Yuhan, JI Chunning, XU Dong, CHEN Weilin. Numerical simulation for flow-induced vibration of regular triangular column under different angles of attack[J]. Journal of Vibration and Shock, 2022, 41(3): 278-286

参考文献

[1] Bernitsas MM, Raghavan K, Ben-Simon Y, et al. VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow[J]. Journal of Offshore Mechanics and Arctic Engineering, 2008, 130: 041101.
[2] Ding WJ, Sun H, Xu WH, et al. Numerical investigation on interactive FIO of two-tandem cylinders for hydrokinetic energy harnessing[J]. ocean engineering, 2019, 187: 106215.
[3] Williamsona CHK, Govardhan R. A brief review of recent results in vortex-induced vibrations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 713-735.
[4] 陈威霖, 及春宁, 许栋. 低雷诺数下串列三圆柱涡激振动中的弛振现象及其影响因素[J]. 力学学报, 2018, 50(4): 766-775. ChenWeilin, Ji Chunning, Xu Dong. Galloping in vortex-induced vibration of three tandem cylinders at low Reynolds numbers and its influencing factors[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 766-775.
[5] Jiang H, Cheng L. Transition to chaos in the cylinder wake through the Mode C flow[J]. Physics of Fluids, 2020, 32: 014103.
[6] Chen W, Ji C, Xu D, et al. Wake modes of freely vibrating side-by-side circular cylinders in laminar flows[J]. Journal of Fluids and Structures, 2019, 89: 82-95.
[7] 刘俊, 高福平. 近壁面柱体涡激振动的迟滞效应[J]. 力学学报, 2019, 51(6): 1630-1640.
Liu Jun, Gao Fuping. Hysteresis in vortex-induced vibrations of a near-wall cylinder[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1630-1640.
[8] Sourav K, Sen S. Transition of VIV-only motion of a square cylinder to combined VIV and galloping at low Reynolds numbers[J]. ocean engineering, 2019, 187: 106208.
[9] Li XT, Lyu Z, Kou JQ, et al. Mode competition in galloping of a square cylinder at low Reynolds number[J]. Journal of Fluid Mechanics, 2019, 867:516-555.
[10] Tamimi V, Naeeni STO, Zeinoddini M, et al. Effects of after-body on the FIV of a right-angle triangular cylinder in comparison to circular, square, and diamond cross-sections[J]. Ships and Offshore Structures, 2018, 14(6): 589-599.
[11] Wang H, Zhao D, Yang W, et al. Numerical investigation on flow-induced vibration of a triangular cylinder at a low Reynolds number[J]. The Japan Society of Fluid Mechanics, 2015, 47(1): 1-23.
[12] Zhang J, Xu G, Liu F, et al. Experimental investigation on the flow induced vibration of an equilateral triangle prism in water[J]. Applied Ocean Research, 2016, 61: 92-100.
[13] Alonso G, Meseguer J, Perez-Grande I. Galloping instabilities of two-dimensional triangular cross-section bodies[J]. Experiments in Fluids, 2005, 38: 789–795.
[14] Alonso G, Meseguer J. A parametric study of the galloping stability of two-dimensional triangular cross-section bodies[J]. Journal of Wind Engineering, 2006, 94: 241-253.
[15] Alonso G, Meseguer J, Pe´rez-Grande I. Galloping stability of triangular cross-sectional bodies: A systematic approach[J]. Journal of Wind Engineering, 2007, 95: 928-940.
[16] Tamimi V, Naeeni STO, Zeinoddini M, et al. Effects of after-body on the FIV of a right-angle triangular cylinder in comparison to circular, square, and diamond cross-sections[J]. Ships and Offshore Structures, 2019,14 (6): 589-599.
[17] Zhu H, Ping H, Wang R, et al. Flow-induced vibration of a flexible triangular cable at low Reynolds numbers[J]. Physics of Fluids, 2019, 31: 057101.
[18] Zhu H, Ping H, Wang R, et al. Dynamic response of a cable with triangular cross section subject to uniform flow at Reynolds number 3900[J]. Physics of Fluids, 2020, 32: 045103.
[19] 张军, 练继建, 刘昉等. 正三棱柱流致振动试验研究[J]. 振动与冲击, 2016, 35(20): 17-23.
Zhang Jun, Lian Jijian, Liu Fang, et al. Experimental investigation on flow induced motion of an equilateral triangle prism[J]. Journal of Vibration and Shock, 2016, 35(20): 17-23.
[20] 田依农, 薛海. 截面长细比对三棱柱流致振动特性的影响[J]. 水动力学研究与进展, 2019, 34(5): 655-663.
Tian Yinong, Xue Hai. Effects of the aspect ratio on the flow induced vibration of a triangular prism[J]. Chinese Journal of Hydrodynamics, 2019, 34(5): 655-663.
[21] Zhao J, Leontini JS, Jacono DL, et al. Fluid-structure interaction of a square cylinder at different angles of attack[J]. Journal of Fluid Mechanics, 2014, 747: 688-721.
[22] Leontini JS, Thompson MC. Vortex-induced vibrations of a diamond cross-section: Sensitivity to corner sharpness[J]. Journal of Fluids and Structures, 2013, 39: 371-390.
[23] Ji C, Munjiza A, Williams JJR. A novel iterative direct-forcing immersed boundary method and its finite volume applications[J]. Journal of Computational Physics, 2012, 231(4): 1797-1821.
[24] 包艳. 典型钝体结构流致效应分析与计算方法研究[D]. 上海: 上海交通大学, 2011.
Bao Y. The research on flow-induced responses of fundamental bluff bodies and its numerical simulation methods[D]. ShangHai: Shanghai Jiaotong University, 2011.
[25] Alawadhi E. Numerical simulation of fluid flow past an oscillating triangular cylinder in a channel[J]. Journal of Fluids Engineering, 2013, 135(4).
[26] De A, Dalal A. Numerical simulation of unconfined flow past a triangular cylinder[J]. International Journal for Numerical Methods in Fluids, 2006, 52: 801-21.
[27] Williamson CHK, Govardhan R. Vortex-induced vibration[J]. Annual Review of Fluid Mechanics, 2004, 36: 413-455.
[28] Prasanth TK, Mittal S. Vortex-induced vibrations of a circular cylinder at low Reynolds numbers[J]. Journal of Fluid Mechanics, 2008, 594: 463-491.
[29] Khalak A, Williamson CHK. Fluid forces and dynamics of a hydroelastic structure with very low mass and damping[J]. Journal of Fluids and Structures, 1997, 11(8): 973-982.
[30] Brankovic M. Vortex-induced vibration attenuation of circular cylinders with low mass and damping[D]. London: Imperial College London, 2004.
[31] Leontini JS, Thompson MC, Hourigan K. The beginning of branching behaviour of vortex-induced vibration during two-dimensional flow[J]. Journal of Fluids and Structures, 2006, 22: 857-864.
[32] Ji C, Xiao Z, Wang Y, et al. Numerical investigationon vortex-induced vibration of an elastically mounted circular cylinder at low Reynolds number using the fictitious domain method[J]. International Journal of Computational Fluid Dynamics, 2011, 25(4): 207-221.
[33] Chen W, Ji C, Xu D, et al. Flow-induced vibrations of an equilateral triangular prism at various angles of attack[J]. Journal of Fluids and Structures, 2020, 97: 103099.
[34] Govardhan R, Williamson CHK. Modes of vortex formation and frequency response of a freely vibrating cylinder[J]. Journal of Fluid Mechanics, 2000, 420: 85-130.
[35] Naudascher E, Rockwell D. Flow-induced vibrations: An engineering guide[M]. Mineola: AA Balkema. 2005.
[36] Parkinson GV. Aeroelastic galloping in one degree of freedom[A]. Symposium Wind Effects on Buildings and Structures[C]. National Physical Laboratory. 1963, 582-609.
[37] Païdoussis M, Price S, De Langre E. Fluid–Structure Interactions: Cross-Flow-Induced Instabilities[M]. Cambridge University Press. 2010.
[38] Den-Hartog JP. Transmission line vibration due to sleet[J]. American Institute of Electrical Engineers, 1932, 51(4): 1074-1076.

PDF(2797 KB)

Accesses

Citation

Detail

段落导航
相关文章

/