随机荷载下陡波形立管的非线性动力分析

顾洪禄,李效民,郭海燕,崔鹏,刘震,李福恒

振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 316-324.

PDF(2523 KB)
PDF(2523 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 316-324.
论文

随机荷载下陡波形立管的非线性动力分析

  • 顾洪禄,李效民,郭海燕,崔鹏,刘震,李福恒
作者信息 +

Nonlinear dynamic analysis of SWR under random load

  • GU Honglu, LI Xiaomin, GUO Haiyan, CUI Peng, LIU Zhen, LI Fuheng
Author information +
文章历史 +

摘要

对陡波形立管在随机荷载作用下的非线性动力响应进行了数值分析。考虑内部流体,基于柔性杆理论建立了陡波形立管的数值模型,采用Newmark-β法求解立管动力响应,利用MATLAB编写相应计算程序DRSWR,将DRSWR的计算结果与OrcaFlex进行对比验证,然后对陡波形立管在随机波浪、顶部浮体随机运动共同激励下的应力响应进行了参数敏感性分析。研究结果表明:浮子段应力水平、应力变化幅值最高;应力极值点为拱弯点和垂弯点;大波高、低周期的波浪会导致立管整体应力水平急剧升高;平均静偏移增大导致立管应力极值减小;大幅高频的慢漂运动会使悬挂点应力显著增大;高密度、高流速内部流体会使陡波形立管处于高应力状态。

Abstract

Numerical investigation was conducted for the nonlinear dynamic analysis of steep wave riser (SWR) under random load. The numerical model of SWR with internal flow was established based on the slender rod model. The Newmark-β method was adopted to solve the dynamic behavior of SWR. A corresponding calculation process, DRSWR, was programmed with MATLAB. Calculation results were compared with those of OrcaFlex to verify the accuracy and reliability of DRSWR. Furthermore, the parametric sensitivity analysis of SWR stress under the combination excitation of random wave and top floater motion was obtained. The analysis results show that the buoyancy section of SWR has the highest global stress level and stress variation amplitude. The peak points of stress are located at the arc bend point and sag bend point. Random wave with large significant wave height and low period can cause a sharp increase in the global stress level. An increase in the mean offset leads to a decrease in stress extremes. Low frequency motion, with a large magnitude and high frequency, can significantly increase the stress of hang-off point. SWR shows high stress under high-density, high-flow velocity internal flow.

关键词

陡波形立管 / 柔性杆模型 / 非线性动力分析 / 应力 / 敏感性分析

Key words

steep wave riser / slender rod model / nonlinear dynamic analysis / stress / sensitivity analysis

引用本文

导出引用
顾洪禄,李效民,郭海燕,崔鹏,刘震,李福恒. 随机荷载下陡波形立管的非线性动力分析[J]. 振动与冲击, 2022, 41(3): 316-324
GU Honglu, LI Xiaomin, GUO Haiyan, CUI Peng, LIU Zhen, LI Fuheng. Nonlinear dynamic analysis of SWR under random load[J]. Journal of Vibration and Shock, 2022, 41(3): 316-324

参考文献

[1]Felisita A, Tobias Gudmestad O, Karunakaran D, et al. Review of steel lazy wave riser concepts for the north Sea[J]. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139(1): 011702.
[2] Kim S, Kim M-H, Shim S, et al. Structural Performance of Deepwater Lazy-Wave Steel Catenary Risers for FPSOs[C]. The Twenty-fourth International Ocean and Polar Engineering Conference, 2015.
[3] Bai Y, Bai Q. Subsea pipelines and risers[M]. Amsterdam: Elsevier, 2014.
[4] Kaewunruen S, Chiravatchradej J, Chucheepsakul S. Nonlinear free vibrations of marine risers/pipes transporting fluid[J]. Ocean engineering, 2005, 32(3-4): 417-440.
[5] Kuiper G, Brugmans J, Metrikine A. Destabilization of deep-water risers by a heaving platform[J]. Journal of sound vibration, 2008, 310(3): 541-557.
[6] Fu J J, Yang H Z. Fatigue Characteristic Analysis of Deepwater Steel Catenary Risers at the Touchdown Point[J]. China Ocean Engineering, 2010, 24(2): 291-304.
[7] Elosta H, Shan H, Incecik A. Dynamic response of steel catenary riser using a seabed interaction under random loads[J]. Ocean Engineering, 2013, 69(C): 34-43.
[8] Bai X L, Huang W P, Vaz M A, et al. Riser-soil interaction model effects on the dynamic behavior of a steel catenary riser[J]. Marine Structures, 2015, 41: 53-76.
[9] 孟丹. 钢悬链线输流立管顶部浮体激励非线性响应研究[J]. 振动与冲击, 2013, 32(4): 96-101.
MENG Dan. Nonlinear dynamic responses of fluid-conveying steel catenary risers subjected to top excitation[J]. Journal of vibration and shock, 2013, 32(4): 96-101.
[10] 张永波, 郭海燕, 孟凡顺, et al. 基于小波变换的顶张力立管涡激振动规律实验研究[J]. 振动与冲击, 2011, 30(002): 149-154.
ZHANG Yong-bo, GUO Hai-yan, MENG Fan-shun, et al. Model tests for vortex-induced vibration of a top tension riser based on wavelet transformation[J]. Journal of vibration and shock, 2011, 30(002): 149-154
[11] 高云, 任铁, 付世晓, et al. 柔性立管涡激振动响应特性试验研究[J]. 振动与冲击, 2015, (17): 6-11.
GAO Yun, REN Tie, FU Shi-xiao, et al. Tests for response characteristics of VIV of a flexible riser[J]. Journal of vibration and shock, 2015, (17): 6-11.
[12] 杨和振, 李华军. 深海钢悬链立管时域疲劳寿命预估研究[J]. 振动与冲击, 2010, 29(3): 22-25.
YANG He-zhen, LI Hua-jun. Time domain fatigue life prediction for deepwater steel catenary riser r[J]. Journal of vibration and shock, 2010, 29(3): 22-25.
[13] Li S, Nguyen C. Dynamic response of deepwater lazy-wave catenary riser[C]. Proceedings of Deep Offshore Technology International, 2010.
[14] Santillan S T, Virgin L N, Plaut R H. Static and Dynamic Behavior of Highly Deformed Risers and Pipelines[C]. Proceedings of the ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering, 2007.
[15] Santillan S T, Virgin L N. Numerical and experimental analysis of the static behavior of highly deformed risers[J]. Ocean Engineering, 2011, 38(13): 1397-1402.
[16] Sun L P, Qi B. Global analysis of a flexible riser[J]. Journal of Marine Science Application, 2011, 10(4): 478-484.
[17] Yang H Z, Li H J. Sensitivity analysis of fatigue life prediction for deepwater steel lazy wave catenary risers[J]. Science China Technological Sciences, 2011, 54(7): 1881-1887.
[18] Wang J L, Duan M L, He T, et al. Numerical solutions for nonlinear large deformation behaviour of deepwater steel lazy-wave riser[J]. Ships and Offshore Structures, 2014, 9(6): 655-668.
[19] Wang J L, Duan M L. A nonlinear model for deepwater steel lazy-wave riser configuration with ocean current and internal flow[J]. Ocean Engineering, 2015, 94: 155-162.
[20] Wang J L, Duan M L, He R Y. A nonlinear dynamic model for 2D deepwater steel lazy-wave riser subjected to top–end imposed excitations[J]. Ships Offshore Structures, 2018, 13(3): 330-342.
[21] 李艳, 李欣. 深水缓波形立管的非线性动力分析[J]. 中国造船, 2014, (2): 92-101.
LI Yan, LI Xin. Nonlinear Analysis of Lazy-Wave Steel Catenary Riser in Deepwater[J]. SHIPBUILDING OF CHINA, 2014, (2): 92-101.
[22] 宋磊建, 付世晓, 陈希恰, et al. 深海脐带缆总体响应特性比较研究[J]. 振动与冲击, 2014, 33(1): 119-124.
SONG Lei-jian, FU Shi-xiao, CHEN Xi-qia, et al. Comparative study on deepwater umbilical overall response characteristics[J]. 2014, 33(1): 119-124.
[23] Ruan W D, Bai Y, Cheng P. Static analysis of deepwater lazy-wave umbilical on elastic seabed[J]. Ocean engineering, 2014, 91: 73-83.
[24] Ruan W D, Liu S H, Li Y Y, et al. Nonlinear Dynamic Analysis of Deepwater Steel Lazy Wave Riser Subjected to Imposed Top-End Excitations[C]. International Conference on Ocean, Offshore and Arctic Engineering, 2016.
[25] Cheng Y, Tang L Y, Fan T H. Dynamic analysis of deepwater steel lazy wave riser with internal flow and seabed interaction using a nonlinear finite element method[J]. Ocean Engineering, 2020, 209: 107498.
[26] Kim S, Kim M-H. Dynamic behaviors of conventional SCR and lazy-wave SCR for FPSOs in deepwater[J]. Ocean Engineering, 2015, 106: 396-414.
[27] Qiao H D, Ruan W D, Shang Z H, et al. Non-Linear Static Analysis of 2D Steep Wave Riser Under Current Load[C]. ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, 2016.
[28] Liu Z, Guo H Y. SENSITIVITY ANALYSIS OF STEEP WAVE RISER WITH INTERNAL FLOW[J]. Journal of Marine Science Technology, 2018, 26(4): 541-551.
[29] Garrett D L. Dynamic Analysis of Slender Rods[J]. Journal of Energy Resources Technology, 1982, 104(4): 302-306.
[30] Paulling J R, Webster W C. A consistent large amplitude analysis of the coupled response of a TLP and Tendon System[C]. Proceedings of the 5th OMAE Symposium, 1986.
[31] Dnv. Environmental conditions and environmental loads: DNV-RP-C205. Oslo:Det Norske Veritas, 2007.
[32] Borgman L. Ocean Wave Simulation for Engineering Design[M]. Berkeley:California University Berkeley Hydraulic Engineering Lab, 1969.
[33] Sexton R M, Agbezuge L K. Random Wave and Vessel Motion Effects on Drilling Riser Dynamics[C]. Offshore Technology Conference, 1976.
[34] 陈海飞. 深水柔性立管非线性静动力分析[D]. 青岛: 中国海洋大学, 2011.
CHEN Hai-fei. Nonlinear Static and Dynamic Analyses of Deepwater Flexible Risers[D]. Qingdao: Ocean University of China, 2011.
[35] Li X M, Guo H Y, Meng F S. Stress Analysis of Top Tensioned Riser Under Random Waves and Vessel Motions[J]. Journal of Ocean University of China, 2010, 9(3): 251-256.

PDF(2523 KB)

626

Accesses

0

Citation

Detail

段落导航
相关文章

/