基于相控阵激光超声的裂纹衍射增强试验研究

高锋1,周虹1,黄超2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 37-44.

PDF(3164 KB)
PDF(3164 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 37-44.
论文

基于相控阵激光超声的裂纹衍射增强试验研究

  • 高锋1,周虹1,黄超2
作者信息 +

Tests for crack diffraction enhancement based on phased array laser ultrasound

  • GAO Feng1, ZHOU Hong1, HUANG Chao2
Author information +
文章历史 +

摘要

针对超声衍射时差法存在检测精度较差、区域检测可靠性不够和信号信噪比低等问题,提出了一种基于光纤皮秒激光器和高速旋转镜的相控阵激光超声裂纹检测方法。利用有限元方法模拟热弹机制下,建立二维瞬态激光超声力-固耦合模型,产生横波与纵波在缺陷处发生衍射现象,分析了裂纹尖端不同奇异点、声波不同中心频率和相控阵激励源不同位置对声波衍射的影响,通过衍射信号的信噪比和位移幅值两个计算指标来分析变化规律,并进行了实验验证。结果表明:数值模拟与实验结果有较好的一致性,相控阵激光源较传统单束激光源对衍射信号幅值和信噪比有明显的增强作用,纵波衍射信号信噪比较理想;衍射信号幅值随裂纹尖端奇异点增加和声波中心频率减小而增大;信噪比随尖端奇异点增加而增大,随声波中心频率一定范围增加无明显变化,随激光源距离的增加呈现先增加后减小的趋势;缺陷定量分析时计算出的裂纹长度与实际裂纹的误差均不超过6.8%。

Abstract

Aiming at the problems of poor detection accuracy, low reliability of area detection and low signal-to-noise ratio of ultrasonic diffraction time difference method, a phased array laser ultrasonic crack detection method based on fiber picosecond laser and high-speed rotating mirror is proposed. The finite element method is used to simulate the thermoelastic mechanism, and a two-dimensional transient laser ultrasonic thermo-solid coupling model is established to generate S-waves and P-waves to diffract at the defect. The influence of different singularities of crack tip, different center frequency of acoustic wave and different position of phased array excitation source on acoustic diffraction is analyzed and verified by experiment. The results show that the numerical simulation results are in good agreement with the experimental results. Compared with the traditional single beam laser source, the phased array laser source has an obvious enhancement effect on the diffraction signal amplitude and signal-to-noise ratio, and the P-wave diffraction signal is ideal. The amplitude of the diffraction signal increases with the increase of the defect singularities and the decrease of the acoustic wave frequency. The signal-to-noise ratio increases with the increase of the tip singularity, and has no obvious change with the increase of the center frequency in a certain range. With the increase of the laser source distance, the signal-to-noise ratio first increases and then decreases, and the error between quantitative analysis of crack length and actual crack is less than 6.8%.

关键词

衍射时差法 / 相控阵激光 / 有限元 / 裂纹尖端 / 信噪比

Key words

time of flight diffraction / phased array laser / finite element / crack tip / signal-to-noise ratio

引用本文

导出引用
高锋1,周虹1,黄超2. 基于相控阵激光超声的裂纹衍射增强试验研究[J]. 振动与冲击, 2022, 41(3): 37-44
GAO Feng1, ZHOU Hong1, HUANG Chao2. Tests for crack diffraction enhancement based on phased array laser ultrasound[J]. Journal of Vibration and Shock, 2022, 41(3): 37-44

参考文献

[1] Scruby C B, Drain L E. Laser Ultrasonics: Techniques and Applications[J]. Optics & Laser Technology, 1991, 23(5): 314-315.
[2] Murray P R, Dewhurst R J. Application of a laser/EMAT system for using shear and LS mode converted waves[J]. Ultrasonics, 2002, 40(1-8): 771-776.
[3] 马保全, 周正干. 航空航天复合材料结构非接触无损检测技术的进展及发展趋势[J]. 航空学报, 2014, 35(7): 1787–1803.
MA Baoquan, ZHOU Zhenggan. Progress and development trends of composite structure evaluation using noncontact nondestructive testing techniques in aviation and aerospace industries[J]. Journal of Aeronautics, 2014, 35(7): 1787–1803.
[4] 迟大钊, 刚铁, 盛朝阳. 超声渡越时差法检测图像中裂纹端部信号的识别[J]. 机械工程 学报, 2007,  43(10): 103-107.
CHI Dazhao, GANG Tie, SHENG Zhaoyang. Method forcrack tip recognition in an ultrasonic time of       flightdiffraction image[J]. Chinese Journal of Mechanical Engineering, 2007, 43(10): 103-107.
[5] Noroy M H, Royer D, Fink M. Sectorial Beam Scanning in Solids by a Laser Ultrasonic Source Array[J]. ultrasonics international, 1993:783-786.
[6] Pei C, Demachi K, Fukuchi T, et al. Cracks measurement using fiber-phased array laser ultrasound generation[J]. Journal of Applied Physics, 2013, 113(16):163101.1-163101.7.
[7] HAN Q, WANG P, ZHENG H. Modified ultrasonic time-of-flight diffraction testing with  Barker code excitation for sizing inclined crack[J]. Applied Acoustics, 2018( 140): 153-159.
[8] Cooney A T, Blackshire J L. Characterization of microscopic surface breaking cracks using the near-field intensification of nondestructive laser-generated surface waves[J]. Proceedings of Spie the International Society for Optical Engineering, 2004, 5392: 158-167.
[9] Ni C, Dong L, Shen Z, et al. The experimental study of fatigue crack detection using scanning laser point source technique[J]. Optics and Laser Technology, 2011, 43(8): 1391-1397.
[10] Ouis D. Noise attenuation by a hard wedge-shaped barrier[J]. Journal of Sound and Vibration, 2003, 262: 347-364.
[11] Mukdadi O M, Datta S K. Transient ultrasonic guided waves in bi-layered anisotropic plates with rectangular cross section[J]. Review of Quantitative Nondestructive Evaluation, 2004, 23:238-245.
[12] Al-Qahtani H M, Datta S K, Mukdadi O M. Laser-Generated Thermoelastic Waves in an Anisotropic Infinite Plate: FEM Analysis[J]. Journal of Thermal Stresses, 2005, 28(11): 1099-1122.
[13] Ye Z M. A new finite element formulation for planar elastic deformation[J]. International Journal of Numerical Methods in Engineering, 1997, 40(14): 2579–2591.
[14] Datta D, Kishore N N. Features of ultrasonic wave propagation to identify defects in composite materials modelled by finite element method[J]. NDT & E International, 1996, 29(4): 213–223.
[15] Li J, Cao J, Xu X. Effects of phase errors on phase locking of all-fiber laser arrays[J]. Optics & Laser Technology, 2013, 47: 372-378.
[16] Yaacobi A, Sun J, Moresco M, et al. Integrated phased array for wide-angle beam steering[J]. Optics Letters, 2014, 39(15): 4575-4578.
[17]  Poulton C V, Ami Y, Cole D B, et al. Coherent solid-state LIDAR with silicon photonic optical phased arrays[J]. Optics Letters, 2017, 42(20): 4091.
[18] Schubert F, Koehler B, Peiffer A. Time domain modeling of axisymmetric wave propagation in isotropic elastic media with CEFIT—cylindrical elastodynamic finite integration technique[J]. Journal of Computational Acoustics, 2008, 9(3):1127-1146.
[19] Gopalakrishnan S, Chakraborty A, Mahapatra D R. Spectral Finite Element Method: Wave Propagation, Diagnostics and Control in Anisotropic and Inhomogeneous Structures[M]. London: Springer Science&Business Media, 2007.
[20] Hutchins D A, Dewhurst R J, Palmer S B. Directivity patterns of laser generated ultrasound in aluminum[J]. The Journal of the Acoustical Society of America, 1981, 70(5): 1362-1369.
[21] 谷艳红, 张振振, 高先和, 等. 激光超声结合电磁超声在金属无损测中的应用研究[J]. 中国激光, 2020, 47(05): 0504002.
Gu Yanhong, Zhang Zhenzhen, Gao Xianhe, et al. Application of Laser Ultrasound Combined with Electromagnetic Ultrasound in Nondestructive Testing of Metals[J]. Chinese Journal of Lasers, 2020, 47(05): 0504002.

PDF(3164 KB)

374

Accesses

0

Citation

Detail

段落导航
相关文章

/