一种用于跨域轴承故障诊断的深度自适应网络

夏懿1,2,徐文学1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 45-53.

PDF(2296 KB)
PDF(2296 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 45-53.
论文

一种用于跨域轴承故障诊断的深度自适应网络

  • 夏懿1,2,徐文学1
作者信息 +

A deep adaptive network for cross-domain bearing fault diagnosis

  • XIA Yi1,2, XU Wenxue1
Author information +
文章历史 +

摘要

针对轴承在不同工况条件下的振动数据存在分布差异,导致诊断精度低的问题,提出一种新的深度自适应网络用于跨域条件下的轴承故障诊断。采用傅里叶变换将原始时域振动信号转换为频域信号并通过深度特征提取器提取其分类特征;利用最大均值差异(Maximize Mean Discrepancy:MMD)来进行深度特征的边缘分布对齐;利用Wasserstein度量网络将源域中有标签数据的类别结构与目标域中无标签数据的类别结构进行匹配,也即对齐不同域的类别条件分布,使得故障数据在不同域的分布能够更好的对齐,从而提高模型在目标域未标签数据集上的分类准确率。实验利用凯斯西储大学公开的故障轴承数据集进行了两种跨域条件的模型迁移,验证了该网络在不同迁移场景中都具有较高的准确率,且优于其它深度自适应网络。

Abstract

The vibration data of bearings are often distributed differently in different working conditions, leading to low fault diagnosis accuracy. To this end, a novel deep adaptation network was proposed for bearing fault diagnosis under cross-domain conditions. First, Fourier transform is used to transform the original vibration signals in the time domain into corresponding signals in the frequency domain. After that, the classification features are extracted by deep feature extractor. Second, Maximize Mean Discrepancy (MMD) is used for aligning marginal distribution of a deep characteristics. Finally, Wasserstein metric network is used to match the category structure of labeled data of the source domain with that of unlabeled data of the target domain, that is, to align the category condition distribution of different domains. By this way, the distribution of data feature can be best aligned in different domains resulting in better diagnosis accuracy of the trained model in the unlabeled target domain. In the experiment, the model migrations under two kinds of cross-domain conditions are designed and tested by using the faulty bearing dataset published by Case Western Reserve University, and it was verified that the network had high diagnosis accuracy in different migration scenarios and was superior to other deep adaptation networks.

关键词

轴承故障诊断 / 跨域自适应 / 边缘分布 / 条件分布

Key words

bearing fault diagnosis / cross-domain adaptation / marginal distribution / conditional distribution

引用本文

导出引用
夏懿1,2,徐文学1. 一种用于跨域轴承故障诊断的深度自适应网络[J]. 振动与冲击, 2022, 41(3): 45-53
XIA Yi1,2, XU Wenxue1. A deep adaptive network for cross-domain bearing fault diagnosis[J]. Journal of Vibration and Shock, 2022, 41(3): 45-53

参考文献

[1] 康守强,胡明武,王玉静,等.基于特征迁移学习的变工况下滚动轴承故障诊断方法[J].中国电机工程学报,2019,39(03):764-772.
 KANG Shouqiang, HU Mingwu, WANG Yujing, et al. Fault diagnosis method of rolling bearing under Variable Working Condition based on feature transfer learning [J]. Proceedings of the CSEE, 2019, 39(03):764-772.
[2] LIU R, YANG B, ZHANG X, et al. Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis [J]. Mechanical Systems & Signal Processing, 2016, 75:345-370.
[3]  CHINE W, MELLIT A, LUGHI V, et al. A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks [J]. Renewable Energy, 2016, 90:501-512.
[4] FUAN W, HUIWEI Z, HONGKAI J, et al. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis [J]. Mechanical Systems & Signal Processing, 2017, 95:187-204.
[5] 李恒, 张氢, 秦仙蓉, 等. 基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法 [J]. 振动与冲击, 2018, 37(19): 132-139.
 LI Heng, ZHANG Qin, QIN Xianrong, et al. Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network [J]. Journal of Vibration and Shock, 2018, 37(19): 132-139.
[6] JIA F, LEI Y, LIN J, et al. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data [J]. Mechanical Systems & Signal Processing, 2016: 303-315.
[7] LI X, ZHANG W, DING Q, et al. Cross-Domain fault diagnosis of rolling element bearings using deep generative neural networks [J]. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5525-5534.
[8] AN Z, LI S, WANG J, et al. Generalization of deep neural network for bearing fault diagnosis under different working conditions using multiple kernel method [J]. Neurocomputing, 2019, 352: 42-53.
[9] TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: maximizing for domain invariance[C] // computer vision and pattern recognition, 2014.
[10] ZHU J, CHEN N, SHEN C, et al. A new deep transfer learning method for bearing fault diagnosis under different working conditions [J]. IEEE Sensors Journal, 2019: 1-1.
[11] HAN T, LIU C, YANG W, et al. A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults [J]. Knowledge Based Systems, 2019, 165: 474-487.
[12] CHEN Y, YANG C, ZHANG Y, et al. Deep conditional adaptation networks and label correlation transfer for unsupervised domain adaptation [J]. Pattern Recognition, 2020, 98:10702
[13] PAN S J, YANG Q. A survey on transfer learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
[14] GENG J, MA X, JIANG W, et al. Cross-Scene hyperspectral image classification based on deep conditional distribution adaptation networks[C] //2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama:IEEE.
[15] LONG M, WANG J, DING G, et al. Transfer feature learning with joint distribution adaptation[C] // international conference on computer vision, 2013: 2200-2207.
[16] LECUN Y, BOSER B E, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition [J]. Neural Computation, 1989, 1(4): 541-551.
[17]  LUDGER R. Optimal transport. old and new [J]. 2009, 111(2): 18-21.
[18] YANG Q, YAN P, ZHANG Y, et al. Low-Dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss [J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1348-1357.
[19] CHENG C, ZHOU B, MA G, et al. Wasserstein distance based deep adversarial transfer Learning for intelligent fault diagnosis [J]. arXiv: Learning, 2019.
[20] SHEN J, QU Y, ZHANG W, et al. Wasserstein distance guided representation learning for domain adaptation [J]. arXiv: Machine Learning, 2017.
[21] KINGMA D P, BA J. Adam: A method for Stochastic Optimization [J]. arXiv: Learning, 2014.
[22] SMITH W A, RANDALL R B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study [J]. Mechanical Systems and Signal Processing, 2015, 64: 100-131.
[23] LI X, ZHANG W, XU N, et al. Deep learning-based machinery fault diagnostics with domain adaptation across sensors at different places[J]. IEEE Transactions on Industrial Electronics, 2019: 1-1.
[24] LONG M, CAO Y, WANG J, et al. Learning transferable features with deep adaptation networks [J]. arXiv: Learning, 2015.
[25] PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis [J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210.

PDF(2296 KB)

Accesses

Citation

Detail

段落导航
相关文章

/