周期性多孔结构特征值拓扑优化

付君健1,2,张跃2,杜义贤1,2,高亮3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 73-81.

PDF(2489 KB)
PDF(2489 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 73-81.
论文

周期性多孔结构特征值拓扑优化

  • 付君健1,2,张跃2,杜义贤1,2,高亮3
作者信息 +

Eigenvalue topology optimization of periodic cellular structures

  • FU Junjian1,2, ZHANG Yue2, DU Yixian1,2, GAO Liang3
Author information +
文章历史 +

摘要

为了实现尺度关联周期性多孔结构的隔振性能优化,提出一种周期性多孔结构特征值拓扑优化方法。基于子结构动态凝聚方法对多孔结构的刚度和质量矩阵进行缩减,采用局部水平集函数对多孔结构进行几何隐式描述,以最大化前六阶特征值为目标函数,以结构体积分数为约束条件,建立周期性多孔结构特征值拓扑优化模型,采用优化准则法对拓扑优化模型进行求解,并研究了多孔结构特征值拓扑优化的尺度效应。研究表明,本方法能有效实现尺度关联的二维和三维周期性多孔结构的特征值拓扑优化,并能大幅提高特征值拓扑优化的计算效率。

Abstract

To realize the vibration isolation performance optimization of scale-related periodic cellular structures, this paper proposed an eigenvalue topology optimization method of periodic cellular structures. The stiffness matrix and mass matrix of the cellular structures are reduced based on the substructural dynamic condensation method. Local level set functions are applied to implicitly describe the geometry of the cellular structures. The topology optimization model of periodic cellular structures is established to maximize the first 6 eigenvalues with volume fraction as the constraint. The topology optimization model is then solved by the optimality criteria method. The scale effect of the topology optimization of cellular structures is also investigated. Research shows that the proposed method can effectively realize the topology optimization of scale-related 2D and 3D periodic cellular structures. The computational efficiency of the eigenvalue topology optimization is also improved intensively.

关键词

多孔结构
/ 特征值拓扑优化 / 水平集法 / 子结构法 / 动态凝聚

Key words

cellular structures
/ eigenvalue topology optimization / level set method / substructure method / dynamic condensation

引用本文

导出引用
付君健1,2,张跃2,杜义贤1,2,高亮3. 周期性多孔结构特征值拓扑优化[J]. 振动与冲击, 2022, 41(3): 73-81
FU Junjian1,2, ZHANG Yue2, DU Yixian1,2, GAO Liang3. Eigenvalue topology optimization of periodic cellular structures[J]. Journal of Vibration and Shock, 2022, 41(3): 73-81

参考文献

[1] 王向明, 苏亚东, 吴斌, 等. 微桁架点阵结构在飞机结构/功能一体化中的应用[J]. 航空制造技术, 2018, 61(10):16-25.
WANG Xiangming, SU Yadong, WU Bin, et al. Application for additive manufacturing of lattice materials on integrated aircraft structures and functions[J]. Aeronautical Manufacturing Technology, 2018, 61(10):16-25.
[2] 刘远东, 莫军, 尹益辉, 等. 考虑热振特性的连续体结构拓扑优化设计[J]. 振动与冲击, 2016, 35(17):113-116.
LIU Yuandong, MO Jun, YIN Yihui, et al. Topologic optimization design for a continuum structures considering its thermal and vibrational performances[J]. Journal of Vibration and Shock , 2016, 35(17):113-116.
[3] 王勖成. 有限单元法[M]. 清华大学出版社, 2003.
Wang Xucheng. Finite Element Method[M]. Tsinghua University Press, 2003.
[4] ANDREASSEN E, ANDREASEN C S. How to determine composite material properties using numerical homogenization[J]. Computational Materials Science, 2014, 83:488-495.
[5] GAO Jie, LUO Zhen, LI Hao, et al. Dynamic multiscale topology optimization for multi-regional micro-structured cellular composites[J]. Composite Structures, 2019, 211:401-417.
[6] Guyan R J. Reduction of Stiffness and Mass Matrices[J]. AIAA Journal, 1965, 3(2):380-380.
[7] YVONNET J, G. BONNET. A consistent nonlocal scheme based on filters for the homogenization of heterogeneous linear materials with non-separated scales[J]. International Journal of Solids and Structures, 2014, 51(1):196-209.
[8] 刘辉, 张洪武. 多节点扩展多尺度有限元法[J]. 固体力学学报, 2013, 33(S1):1-7.
LIU Hui, ZHANG Hongwu. Multi-node extended multiscale finite element method[J]. Chinese Journal of Solid Mechanics, 2013, 33(S1):1-7.
[9] AAGE N, ANDREASSEN E, LAZAROV B S, et al. Giga-voxel computational morphogenesis for structural design[J]. Nature, 2017, 550(7674):84-86.
[10] 吴紫俊, 肖人彬. 基于子结构的周期性结构设计方法[J]. 河北工业大学学报, 2020, 49(01):32-38.
WU Zijun, XIAO Renbin. The substructure-based topology optimization method for periodic structure[J]. Journal of Hebei University of Technology, 2020, 49(01):32-38.
[11] FU Junjian, XIA Liang, GAO Liang, et al. Topology optimization of periodic structures with substructuring[J]. Journal of Mechanical Design, 2019, 141(7):071403.
[12] WU Zijun, XIA Liang, WANG Shuting, et al. Topology optimization of hierarchical lattice structures with substructuring[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 345:602-617.
[13] WU Zijun, FAN Fei, XIAO Renbin, et al. The substructuring‐based topology optimization for maximizing the first eigenvalue of hierarchical lattice structure[J]. International Journal for Numerical Methods in Engineering, 2020, 121(13):2964-2978.
[14] O'CALLAHAN J. A procedure for an improved reduced system (IRS) model[C]. Seventh International Modal Analysis Conference. Las Vegas: IMAC, 1989.
[15] OSHER S, FEDKIW R. Level set methods and dynamic implicit surfaces[M]. Springer Science & Business Media, 2006.
[16] 李好. 改进的参数化水平集拓扑优化方法与应用研究[D]. 华中科技大学, 2016.
LI Hao. Research on structural topology optimization method improvement and applications based on parametric level set[D]. Huazhong University of Science and Technology, 2016.
[17] WANG M Y, ZONG H, MA Q, et al. Cellular level set in B-splines (CLIBS): A method for modeling and topology optimization of cellular structures[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 349:378-404.
[18] LIU H, ZONG H, TIAN Y, et al. A novel subdomain level set method for structural topology optimization and its application in graded cellular structure design. Structural and Multidisciplinary Optimization[J]. 60, 2221–2247.
[19] SAAD Y. Iterative methods for sparse linear systems[M]. SIAM, 2003.
[20] MA Z D, KIKUCHI N, CHENG H C. Topological design for vibrating structures. Computer Methods in Applied Mechanics and Engineering[J]. 1995, 121(1-4):259-280.
[21] WANG M Y, WANG X, GUO D. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering[J]. 2003, 192(1-2):227-246.
[22] XIA Q, SHI T, WANG M Y. A level set based shape and topology optimization method for maximizing the simple or repeated first eigenvalue of structure vibration. Structural and Multidisciplinary Optimization[J]. 2011, 43(4):473-485.
[23] DU J, OLHOFF N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Structural and Multidisciplinary Optimization[J]. 2007, 34(2):91-110.
[24] 罗震. 基于变密度法的连续体结构拓扑优化设计技术研究[D]. 华中科技大学, 2005.
LUO Zhen. Topological optimization design for continuum-type structures based on variable density approach[D]. Huazhong University of Science and Technology, 2005.
[25] SIGMUND O. A 99 line topology optimization code written in Matlab. Structural & Multidisciplinary Optimization[J]. 2001, 21(2):120-127.

PDF(2489 KB)

563

Accesses

0

Citation

Detail

段落导航
相关文章

/