Eigenvalue topology optimization of periodic cellular structures
FU Junjian1,2, ZHANG Yue2, DU Yixian1,2, GAO Liang3
Author information+
1. Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenace, Yichang 443002, China;
2. College of Mechanical & Power Engineering, China Three Gorges University, Yichang 443002, China;
3. State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
To realize the vibration isolation performance optimization of scale-related periodic cellular structures, this paper proposed an eigenvalue topology optimization method of periodic cellular structures. The stiffness matrix and mass matrix of the cellular structures are reduced based on the substructural dynamic condensation method. Local level set functions are applied to implicitly describe the geometry of the cellular structures. The topology optimization model of periodic cellular structures is established to maximize the first 6 eigenvalues with volume fraction as the constraint. The topology optimization model is then solved by the optimality criteria method. The scale effect of the topology optimization of cellular structures is also investigated. Research shows that the proposed method can effectively realize the topology optimization of scale-related 2D and 3D periodic cellular structures. The computational efficiency of the eigenvalue topology optimization is also improved intensively.
FU Junjian1,2, ZHANG Yue2, DU Yixian1,2, GAO Liang3.
Eigenvalue topology optimization of periodic cellular structures[J]. Journal of Vibration and Shock, 2022, 41(3): 73-81
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王向明, 苏亚东, 吴斌, 等. 微桁架点阵结构在飞机结构/功能一体化中的应用[J]. 航空制造技术, 2018, 61(10):16-25.
WANG Xiangming, SU Yadong, WU Bin, et al. Application for additive manufacturing of lattice materials on integrated aircraft structures and functions[J]. Aeronautical Manufacturing Technology, 2018, 61(10):16-25.
[2] 刘远东, 莫军, 尹益辉, 等. 考虑热振特性的连续体结构拓扑优化设计[J]. 振动与冲击, 2016, 35(17):113-116.
LIU Yuandong, MO Jun, YIN Yihui, et al. Topologic optimization design for a continuum structures considering its thermal and vibrational performances[J]. Journal of Vibration and Shock , 2016, 35(17):113-116.
[3] 王勖成. 有限单元法[M]. 清华大学出版社, 2003.
Wang Xucheng. Finite Element Method[M]. Tsinghua University Press, 2003.
[4] ANDREASSEN E, ANDREASEN C S. How to determine composite material properties using numerical homogenization[J]. Computational Materials Science, 2014, 83:488-495.
[5] GAO Jie, LUO Zhen, LI Hao, et al. Dynamic multiscale topology optimization for multi-regional micro-structured cellular composites[J]. Composite Structures, 2019, 211:401-417.
[6] Guyan R J. Reduction of Stiffness and Mass Matrices[J]. AIAA Journal, 1965, 3(2):380-380.
[7] YVONNET J, G. BONNET. A consistent nonlocal scheme based on filters for the homogenization of heterogeneous linear materials with non-separated scales[J]. International Journal of Solids and Structures, 2014, 51(1):196-209.
[8] 刘辉, 张洪武. 多节点扩展多尺度有限元法[J]. 固体力学学报, 2013, 33(S1):1-7.
LIU Hui, ZHANG Hongwu. Multi-node extended multiscale finite element method[J]. Chinese Journal of Solid Mechanics, 2013, 33(S1):1-7.
[9] AAGE N, ANDREASSEN E, LAZAROV B S, et al. Giga-voxel computational morphogenesis for structural design[J]. Nature, 2017, 550(7674):84-86.
[10] 吴紫俊, 肖人彬. 基于子结构的周期性结构设计方法[J]. 河北工业大学学报, 2020, 49(01):32-38.
WU Zijun, XIAO Renbin. The substructure-based topology optimization method for periodic structure[J]. Journal of Hebei University of Technology, 2020, 49(01):32-38.
[11] FU Junjian, XIA Liang, GAO Liang, et al. Topology optimization of periodic structures with substructuring[J]. Journal of Mechanical Design, 2019, 141(7):071403.
[12] WU Zijun, XIA Liang, WANG Shuting, et al. Topology optimization of hierarchical lattice structures with substructuring[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 345:602-617.
[13] WU Zijun, FAN Fei, XIAO Renbin, et al. The substructuring‐based topology optimization for maximizing the first eigenvalue of hierarchical lattice structure[J]. International Journal for Numerical Methods in Engineering, 2020, 121(13):2964-2978.
[14] O'CALLAHAN J. A procedure for an improved reduced system (IRS) model[C]. Seventh International Modal Analysis Conference. Las Vegas: IMAC, 1989.
[15] OSHER S, FEDKIW R. Level set methods and dynamic implicit surfaces[M]. Springer Science & Business Media, 2006.
[16] 李好. 改进的参数化水平集拓扑优化方法与应用研究[D]. 华中科技大学, 2016.
LI Hao. Research on structural topology optimization method improvement and applications based on parametric level set[D]. Huazhong University of Science and Technology, 2016.
[17] WANG M Y, ZONG H, MA Q, et al. Cellular level set in B-splines (CLIBS): A method for modeling and topology optimization of cellular structures[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 349:378-404.
[18] LIU H, ZONG H, TIAN Y, et al. A novel subdomain level set method for structural topology optimization and its application in graded cellular structure design. Structural and Multidisciplinary Optimization[J]. 60, 2221–2247.
[19] SAAD Y. Iterative methods for sparse linear systems[M]. SIAM, 2003.
[20] MA Z D, KIKUCHI N, CHENG H C. Topological design for vibrating structures. Computer Methods in Applied Mechanics and Engineering[J]. 1995, 121(1-4):259-280.
[21] WANG M Y, WANG X, GUO D. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering[J]. 2003, 192(1-2):227-246.
[22] XIA Q, SHI T, WANG M Y. A level set based shape and topology optimization method for maximizing the simple or repeated first eigenvalue of structure vibration. Structural and Multidisciplinary Optimization[J]. 2011, 43(4):473-485.
[23] DU J, OLHOFF N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Structural and Multidisciplinary Optimization[J]. 2007, 34(2):91-110.
[24] 罗震. 基于变密度法的连续体结构拓扑优化设计技术研究[D]. 华中科技大学, 2005.
LUO Zhen. Topological optimization design for continuum-type structures based on variable density approach[D]. Huazhong University of Science and Technology, 2005.
[25] SIGMUND O. A 99 line topology optimization code written in Matlab. Structural & Multidisciplinary Optimization[J]. 2001, 21(2):120-127.