多层堆叠式永磁动力减振刀杆设计与仿真分析

王民1,2,刘保钟1,秦鹏1,孙铁伟1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 8-17.

PDF(1286 KB)
PDF(1286 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 8-17.
论文

多层堆叠式永磁动力减振刀杆设计与仿真分析

  • 王民1,2,刘保钟1,秦鹏1,孙铁伟1
作者信息 +

Design and simulation analysis for multilayer stacked permanent magnet dynamic vibration absorber cutter bar

  • WANG Min1,2, LIU Baozhong1, QIN Peng1, SUN Tiewei1
Author information +
文章历史 +

摘要

针对大长径比刀杆中传统动力减振器的橡胶疲劳老化,阻尼液易泄露,刚度和阻尼难以精准设计等问题,设计了一种利用磁刚度和电涡流阻尼提供刚度和阻尼的多层堆叠式永磁动力减振器,实现了刚度和阻尼的独立精准设计。独特的堆叠式结构可以在相同体积下提供更大的磁刚度和电涡流阻尼,保证永磁动力减振器可达到最优减振条件。分别建立了多层永磁动力减振器中磁刚度和电涡流阻尼的理论计算模型,并利用MATLAB软件和Maxwell电磁仿真软件分别探究了磁刚度和电涡流阻尼与永磁动力减振器各部分尺寸参数之间的关系。最后利用MATLAB软件分别对安装永磁动力减振器的刀杆和等尺寸实心刀杆进行仿真分析。结果表明安装永磁动力减振器后刀杆的频响函数幅值最大值下降91.1%。

Abstract

Aiming at the problems of rubber fatigue aging, easy leakage of damping fluid, and difficulty in precise design of stiffness and damping of traditional dynamic vibration absorber in large aspect ratio cutter bar, a multi-stacked permanent dynamic vibration absorber with magnetic stiffness and eddy current damping to provide stiffness and damping was designed, this design can tune the stiffness and damping of proposed cutter bar efficiently and independently. The unique stacked structure can provide more magnetic stiffness and eddy current damping at the same space, which ensures that the permanent dynamic vibration absorber can achieve a better optimal vibration reduction condition. The theoretical calculation models of magnetic stiffness and eddy current damping in multi-stacked permanent dynamic vibration absorber were established respectively, and the relationships between magnetic stiffness and eddy current damping and the size parameters of each part of permanent dynamic vibration absorber were explored with MATLAB software and Maxwell electromagnetic simulation software respectively. Finally, MATLAB software was used to simulate and analyze the cutter bar installed with the permanent magnet dynamic vibration absorber and the original cutter bar with the same size, the results show that the maximum amplitude of frequency response function of the utter tip decreased by over 90% with the use of permanent dynamic vibration absorber.

关键词

动力吸振 / 电涡流阻尼 / 有限元 / 磁刚度

Key words

 dynamic vibration absorber / eddy current damping / finite element / magnetic stiffness

引用本文

导出引用
王民1,2,刘保钟1,秦鹏1,孙铁伟1. 多层堆叠式永磁动力减振刀杆设计与仿真分析[J]. 振动与冲击, 2022, 41(3): 8-17
WANG Min1,2, LIU Baozhong1, QIN Peng1, SUN Tiewei1. Design and simulation analysis for multilayer stacked permanent magnet dynamic vibration absorber cutter bar[J]. Journal of Vibration and Shock, 2022, 41(3): 8-17

参考文献

[1] 杨毅青,余玉. 基于两自由度被动阻尼器的减振铣刀设计[J]. 计算机集成制造系统, 2016, 22(011):2588-2593.
YANG Yi-qing, YU Yu. Design of damped milling cutter based on two-DOF passive damper[J]. Computer Integrated Manufacturing Systems, 2016, 22(011):2588-2593.
[2] 王军,吴凤和,韩亚丽,等. 层状复合结构镗刀杆设计与性能研究[J].中国机械工程,2013,24(06):711-715.
WANG Jun, WU Feng-he, HAN Ya-li, et al. Boring Bar Design with Laminar Composite Structure and Research on Properties[J]. China Mechanical Engineering, 2013, 24(6):711-715.
[3] 马永,沈春根,李伟家,等. 被动阻尼减振铣刀的结构设计及试验研究[J]. 工具技术,2019,53(11):12-15.
MA Yong, SHEN Chun-gen, LI Wei-jia, et al. Structural Design and Experimental Study of Passive Damping Anti-Vibration Milling Cutter[J]. Tool Engineering, 2019,53(11):12-15.
[4] 李斌,牛文超,徐兆懿,等. 电涡流耗能动力吸振器设计与试验研究[J].西北工业大学学报,2016,34(01):18-24.
LI Bin, NIU Wen-chao, XU Zhao-yi, et al. Eddy Current Vibration Absorber Design and Experiments[J]. Journal of Northwestern Polytechnical University, 2016,34(01):18-24.
[5] 肖登红,潘强,何田,等. 一种新型电涡流阻尼器及阻尼性能研究[J].噪声与振动控制,2014,34(06):197-201.
XIAO Deng-hong, PAN Qiang, HE Tian, et al. Design and Analysis of a Novel Eddy Current Damper[J]. Noise and Vibration Control, 2014,34(06):197-201.
[6] 赵亚平. 用于空间光学载荷微振动抑制的电磁式动力吸振器研究[D].中国科学院大学(中国科学院长春光学精密机械与物理研究所),2018.
ZHAO Ya-ping, Research on Electromagnetism Dynamic Vibration absorber for micro-vibration suppression of space optical load[D]. University of Chinese Academy of Science (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2018.
[7] Sodano, H. A. Eddy Current Damping in Structures[J]. Shock & Vibration Digest, 2004, 36(6):469-478.
[8] Ebrahimi B, Khamesee M B, Golnaraghi F, et al. Permanent magnet configuration in design of an eddy current damper[J]. Microsystem Technologies, 2010, 16(s1-2):19-24.
[9] DEAN, KARNOPP. Permanent Magnet Linear Motors Used as Variable Mechanical Dampers for Vehicle Suspensions[J]. Vehicle System Dynamics, 2007,18(4):187-200.
[10] 陈政清,张弘毅,黄智文,等. 板式电涡流阻尼器有限元仿真与参数优化[J].振动与冲击,2016,35(18):123-127.
CHEN Zheng-qing, ZHANG Hong-yi, HUANG Zhi-wen, et al. FEM simulation and parameter optimization of a planar eddy current damper[J]. Journal of Vibration and Shock, 2016,35(18):123-127.
[11] 方重,吴和霖,楼梦麟,等. 电磁涡流耗能调谐质量阻尼器研制与性能试验[J].同济大学学报(自然科学版),2001(06):752-756.
FANG Zhong, WU He-lin, LOU Meng-lin, et al. Development of Electromagnetism Vortex Flow Energy Dissipation TMD Devices and Test Study on Its Property[J]. Journal of Tongji University, 2001(06):752-756.
[12] ZUO L, CHEN X, Nayfeh S, et al. Design and Analysis of a New Type of Electromagnetic Damper with Increased Energy Density[J]. Journal of Vibration & Acoustics, 2011, 133(4):041006.
[13] 田录林. 永磁轴承和导轨磁力解析模型的研究[D].西安理工大学,2008.
TIAN Lu-lin. Research on the analytical magnetic force model of permanent magnet bearings and permanent magnet guideway[D]. Xi’an University of Technology,2008.
[14] 田录林,李言,田琦,等. 大外径多环嵌套永磁轴承轴向磁力模型[J].电机与控制学报,2009,13(03):349-355.
Tian Lu-lin, LI Yan, TIAN Qi, et al. Axial magnetic force model for large outer diameter multi-annular-nesting permanent magnetic bearings[J]. Electric Machines & Control, 2009,13(03):349-355.
[15] 谭庆昌,刘明洁,孟慧琴,等. 永磁向心轴承承载能力与刚度的计算[J].摩擦学学报,1994(04):337-344.
TAN Qing-chang, LIU Ming-jie, MENG Hui-qin, et al. Study on bearing capacity and stiffness of radial magnetic bearing [J]. Tribology, 1994(04):337-344.
[16] 孙立军,张涛,赵兵,等. 永磁磁轴承数学模型的研究[J].机械工程学报,2005(04):69-74.
SUN Li-jun, ZHANG Tao, ZHAO Bing, et al. Study of Mathematical Model of Permanent Magnet Bearings[J]. Journal of Mechanical Engineering, 2005(04):69-74.
[17] 黄文杰,左洪福,王瑞凯,等. 轴向磁化双环嵌套磁场的解析模型及其应用[J].机械工程学报,2012,48(19):122-127.
HUANG Wen-jie, ZUO Hong-fu, WANG Rui-kai, et al. Analytic Model and Application of the Axially Magnetized and Bi-annular-shaped Magnetic Field[J]. Journal of Mechanical Engineering, 2012, 48(19):122-127.
[18] 王洪涛,李满枝,沈有建,等. 蒙特卡罗方法计算三重积分[J].科技视界,2014(15):53-54.
WANG Hong-tao, LI Man-zhi, SHEN You-jian, et al. Calculation of Triple Integral with Monte-Carlo Method[J]. ence & Technology Vision, 2014(15):53-54.
[19] LI M Z, WANG H T, SHEN Y J, et al. Improvement of calculating triple integral based on Monte-Carlo algorithm[C]// International Conference on Machine Learning & Cybernetics. IEEE, 2010.
[20] WANG H T, LI M Z, SHEN Y J, et al. Improved Simulation of Double Integrals Based on Monte-Carlo Method[J]. Advanced Materials Research, 2013, 655-657:1016-1019.
[21] 张学斌,陈长征. 基于ANSYS Maxwell仿真变压器绕组振动受力分析[J].机械工程师,2020(09):29-30+34.
ZHANG Xue-bin, CHEN Chang-zheng. Electromagnetic Force Simulation Analysis of Transformer Winding Vibration Based on ANSYS Maxwell[J]. Mechanical Engineers, 2020(09):29-30+34.
[22] Gersem H D, Hameyer K. A multiconductor model for finite-element eddy-current simulation[J]. Magnetics IEEE Transactions on, 2002, 38(2):533-536.
[23] 李伟家,沈春根,马永,等. 被动阻尼减振铣刀的结构设计及振动特性分析[J].工具技术,2019,53(08):56-60.
LI Wei-jia, SHEN Chun-gen, MA Yong, et al. Structure Design and Vibration Optimization Analysis of Passive Damping Anti-Vibration Milling Cutter[J]. Tool Engineering, 2019,53(08):56-60.
[24] Febbo M, Vera S A. Optimization of a two degree of freedom system acting as a dynamic vibration absorber [J]. Journal of Vibration & Acoustics, 2008, 130(1):83-88.
[25] Asami T, Baz A M. Analytical Solutions to H∞ and H2 Optimization of dynamic vibration absorbers Attached to Damped Linear Systems[J]. Transactions of the Japan Society of Mechanical Engineers, 2001, 67(655):597-603.

PDF(1286 KB)

Accesses

Citation

Detail

段落导航
相关文章

/