基于主余震序列的高拱坝极限抗震能力损失研究

金爱云,王进廷,潘坚文

振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 82-89.

PDF(2296 KB)
PDF(2296 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 82-89.
论文

基于主余震序列的高拱坝极限抗震能力损失研究

  • 金爱云,王进廷,潘坚文
作者信息 +

Ultimate seismic capacity loss of high arch dam based on mainshock-aftershock sequences

  • JIN Aiyun, WANG Jinting, PAN Jianwen
Author information +
文章历史 +

摘要

目前,高拱坝的抗震安全性分析中仅考虑单独主震的作用,而忽略地震中可能伴随发生的多次余震,对高拱坝在主余震序列作用下的动力响应规律尚缺乏充分认识。本文以大岗山拱坝为例,建立了综合考虑坝体损伤非线性、横缝开合以及半无限地基辐射阻尼效应的拱坝-库水-地基有限元分析模型,并基于耐震时程法(ETA)构建主震-ETA余震序列进行高拱坝非线性动力分析。研究结果表明,ETA的计算结果与增量动力分析法(IDA)具有可比性;高拱坝的极限抗震能力在主震受损情况下将发生损失,且随主震强度增大而损失增加。最后,基于主震-ETA余震序列计算结果给出了大岗山拱坝的极限抗震能力损失曲线。

Abstract

In the current practice of dam engineering, only the mainshock is considered in the seismic design of high arch dams, and the multiple aftershocks which may occur in an earthquake event are ignored. In this paper, the mainshock-ETA aftershock sequences which based on endurance time analysis (ETA) method are constructed and the loss of ultimate seismic capacity (USC) is defined. As a case study, the seismic behavior of the Dagangshan arch dam using the nonlinear analysis model of dam-reservoir-foundation systems, which considers the opening of contraction joints, the nonlinearity of dam concrete, and the radiation damping effect of semi-unbounded foundation. The analysis results show that the structure response resulted from ETA is comparable with that of incremental dynamic analysis (IDA). Mainshocks may results in the loss of the USC of high arch dams, which will increase with increasing in the mainshock intensity. Finally, the USC curve of the Dagangshan arch dam is generated. According the USC curve, the Dagangshan arch dam has a certain safety margin under design earthquakes.

关键词

高拱坝 / 非线性动力分析 / 抗震能力 / 主余震 / 损伤

Key words

High arch dam / nonlinear dynamic analysis / seismic capacity / mainshock-aftershock / damage

引用本文

导出引用
金爱云,王进廷,潘坚文. 基于主余震序列的高拱坝极限抗震能力损失研究[J]. 振动与冲击, 2022, 41(3): 82-89
JIN Aiyun, WANG Jinting, PAN Jianwen. Ultimate seismic capacity loss of high arch dam based on mainshock-aftershock sequences[J]. Journal of Vibration and Shock, 2022, 41(3): 82-89

参考文献

[1] 吴开统, 李文喜. 强余震的灾害评估[J]. 中国地震, 1995(4): 368-373.
Wu K T, Li W X. Disaster estimation of strong aftershocks[J]. Earthquake Research in China. 1995, 4:368-373.
[2] Bathe K J, Khoshgoftaar M R. Finite element free surface seepage analysis without mesh iteration[J]. International Journal for Numerical and Analytical Methods in Geomechanics. 1979, 3(1): 13-22.
[3] Zheng Y, Ni S D, Xie Z J, et al. Strong aftershocks in the northern segment of the Wenchuan earthquake rupture zone and their seismotectonic implications [J]. Earth and Planet Space. 2010, 62(11): 881-886.
[4] Varum H, Furtado A, Rodrigues H, et al, Seismic performance of the infill masonry walls and ambient vibration tests after the Ghorka 2015, Nepal earthquake [J]. Bulletin of Earthquake Engineering. 2017, 15(3): 1185-1212.
[5] Li X, Liu X L, Li J G, et al. Factor analysis induced geological disasters of the M7.0 Lushan earthquake in China [J]. Geodesy and Geodynamics. 2013, 4(2): 22-29.
[6] 杨佑发, 肖淳, 谭曦. 主余震作用下山地掉层框架结构的易损性分析[J]. 地震工程学报. 2020, 42(02): 290-298.
Yang Y F, Xiao CH, Tan X. Fragility Analysis of Step-terrace Frame Structures on the Slope under Mainshock and Aftershocks[J]. China Earthquake Engineering Journal. 2020, 42(02): 290-298.
[7] 韩建平, 李军. 考虑主余震序列影响的低延性钢筋混凝土框架易损性分析[J]. 工程力学. 2020, 37(02): 124-133.
Han J P, Li J. Seismic Fragility analysis of low-ductile RC frame accounting for the influence of mainshock-aftershock sequences[J]. Engineering Mechanics. 2020, 37(02): 124-133.
[8] 柳春光, 贾玲玲. 大跨度斜拉桥在接连两次地震作用下的响应分析[J]. 振动与冲击. 2010(3): 189-192.
Liu C G, Jia L L. Response analysis of long span cable-stayed bridge subjected to two successive earthquakes[J]. Journal of Vibration and Shock. 2010(3): 189-192.
[9] Jalayer F, Ebrahimian H. Seismic risk assessment considering cumulative damage due to aftershocks[J]. Earthquake Engineering & Structural Dynamics. 2017, 46(3): 369-389.
[10] Wang X, Wen W, Zhai C. Vulnerability assessment of a high-rise building subjected to mainshock-aftershock sequences[J]. The Structural Design of Tall and Special Buildings, 2020: e1786.
[11] Wen W, Zhai C, Ji D, et al. Framework for the vulnerability assessment of structure under mainshock-aftershock sequences[J]. Soil Dynamics and Earthquake Engineering, 2017, 101:41-52.
[12] 熊瑜, 张林, 陈媛, 等. 主震和余震联合作用下复杂地基上重力坝的稳定性分析[J]. 岩土力学, 2015, 36(08): 2332-2338.
Xiong Y, Zhang L, Chen Y, et al. Stability of gravity dam with a complex foundation under combined effect of main shock and aftershocks[J]. Rock and Soil mechanics. 2015, 36(08): 2332-2338.
[13] 翟亚飞, 毕仲辉, 唐彧杰, 等. 基于NGA模型的主余震序列作用下重力坝损伤破坏研究[J]. 水利学报. 2020, 51(02): 152-157.
Zhai Y F, Bi Z H, Tang Y J, et al. Study on damage and failure of gravity dam under main aftershock sequence based on NGA model[J]. Journal of Hydraulic Engineering. 2020, 51(02): 152-157.
[14] 王高辉, 卢文波, 严鹏, 等. 强余震对主震受损重力坝非线性动态响应的影响[J]. 水利学报. 2017, 48(06): 661-669.
Wang G H, Lu W B, Yan P, et al. Effect of strong aftershocks on nonlinear dynamic response of mainshock-damaged concrete gravity dam[J]. Journal of Hydraulic Engineering. 2017, 48(06): 661-669.
[15] Zhang S, Wang G, Sa W. Damage evaluation of concrete gravity dams under mainshock-aftershock seismic sequences[J]. Soil Dynamics and Earthquake Engineering. 2013, 50: 16-27.
[16] Alliar P, Leger P. Earthquake safety evaluation of gravity dams considering aftershocks and reduced drainage efficiency[J]. Journal of Engineering Mechanics. 2008, 134(1): 12-22.
[17] Pang R, Xu B, Zhou Y, et al. Fragility analysis of high CFRDs subjected to mainshock-aftershock sequences based on plastic failure[J]. Engineering Structures, 2020, 206.
[18] Pang R, Xu B, Zhang X, et al. Seismic performance investigation of high CFRDs subjected to mainshock-aftershock sequences[J]. Soil Dynamics and Earthquake Engineering, 2019, 116:82-85.
[19] Estekanchi H, Vafai A, Sadeghazar M. Endurance time method for seismic analysis and design of structures[J]. Scientia Iranica. 2004, 11(4): 361–70.
[20] Estekanchi H, Valamanesh V, Vafai A. Application of Endurance Time method in linear seismic analysis [J]. Engineering Structures. 2007, 10(29): 2551-2562.
[21] 潘坚文. 高混凝土坝静动力非线性断裂与地基辐射阻尼模拟研究[D]. 北京: 清华大学, 2010.
Pan J W. Nonlinear Static and Seismic Fracture Analysis of High Concrete Dams and Modeling of Radiation Damping for Foundation[D]. Beijing: Tsinghua University, 2010.
[22] Westergaard H. Water pressures on dams during earthquakes [J]. Tansactions of the American Society of Civil Engineers, ASCE. 1933, 98: 418-433.
[23] 王进廷, 潘坚文, 张楚汉. 地基辐射阻尼对高拱坝非线性地震反应的影响[J]. 水利学报. 2009, 040(004): 413-420.
Wang J T, Pan J W, Zhang C H. Effect of radiation damping on nonlinear response of high arch dams[J]. Journal of Hydraulic Engineering. 2009, 040(004): 413-420.
[24] Lee J, Fenves L. Plastic-damage model for cyclic loading of concrete structures [J]. Journal of Engineering Mechanics. 1998, 124(3): 892–900.
[25] Hariri-Ardebili M, Saouma V. Collapse fragility curves for concrete dams: comprehensive study[J]. Journal of Structure Engineering. 2016, 142(10): 1-13.
[26] DL 5073—2000. 水工建筑物抗震设计规范[S]. 北京: 中国电力出版社, 2000.
DL 5073—2000. Specifications for seismic design of hydraulic structures[S]. Beijing: China Electric Power Press, 2000.
[27] Zhao F, Zhang Y, Lv H. Artificial ground motion compatible with specified ground shaking peaks and target response spectrum[J]. Earthquake Engineering and Engineering Vibration. 2006, 5(1): 41-48.
[28] Pan JW, Zhang CH, Xu YJ, et al. A comparative study of the different procedures for seismic cracking analysis of concrete dams[J]. Soil dynamics & earthquake engineering. 2011, 31(11): 1594-1606.
[29] Wang JT, Zhang MX, Jin AY, et al. Seismic fragility of arch dams based on damage analysis[J]. Soil Dynamics & Earthquake Engineering. 2018, 109: 58-68.
[30] Baker J. Efficient Analytical Fragility Function Fitting Using Dynamic Structural Analysis[J]. Earthquake Spectra. 2015, 31(1): 579-599.
[31] GB 51247—2018. 水工建筑物抗震设计标准[S]. 北京: 中国计划出版社, 2018.
GB 51247—2018. Standard for seismic design of hydraulic structures[S]. Beijing: China Planning Press, 2018.

PDF(2296 KB)

339

Accesses

0

Citation

Detail

段落导航
相关文章

/