基于可变形空腔的起落架舱体噪声抑制研究

翟庆波1,宁方立1,丁辉1,刘哲1,韦娟2,李宝清3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 99-106.

PDF(2538 KB)
PDF(2538 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (3) : 99-106.
论文

基于可变形空腔的起落架舱体噪声抑制研究

  • 翟庆波1,宁方立1,丁辉1,刘哲1,韦娟2,李宝清3
作者信息 +

Noise suppression of landing gear cabin based on deformable cavity

  • ZHAI Qingbo1, NING Fangli1, DING Hui1, LIU Zhe1, WEI Juan2, LI Baoqing3
Author information +
文章历史 +

摘要

提出了一种基于可变形空腔的起落架舱体结构,通过机械装置调节舱体底板及后壁倾斜角度,不需要额外增加舱体体积,使用声学有限元法探讨了该结构在低马赫数下的噪声抑制效果,研究发现,随着舱体后壁倾斜角度的增大,舱体内部及外部的噪声明显减小,同时模态频率逐渐增大,有助于避免舱体结构发生共振破坏;舱体后壁倾斜一个较小的角度就能有效地改善内部的声反射环境,进而抑制舱体内部的高频模态噪声、总声压级。当后壁倾斜角度大于某个临界值时,继续增大倾斜角度对于舱体内部高频模态噪声以及总声压级的抑制效果不再明显,在当前的仿真条件下,舱体后壁最佳倾斜角度范围为10°到16°。

Abstract

A landing gear cabin structure based on the deformable cavity is proposed. The tilt angles of the cabin floor and rear wall are adjusted by mechanical devices without additional cabin volume. The acoustic finite element method is adopted to investigate the noise suppression effect of the proposed structure at low Mach numbers. It is found that with the increase of the rear wall tilt angle, the noise inside and outside the cabin is significantly reduced. Meanwhile, the modal frequencies gradually increase, which is beneficial to avoid the occurrence of cabin structure. A small rear wall tilt angle can effectively improve the internal sound reflection environment, thereby suppressing the high-frequency modal noise and the overall sound pressure level inside the cabin. When the rear wall tilt angle is greater than a certain critical value, further increasing the tilt angle has no obvious effect on the suppression of high-frequency modal noise and the overall sound pressure level. Under the current simulation conditions, the optimal range of the rear wall tilt angle is from 10 degrees to 16 degrees.

关键词

可变形空腔 / 起落架舱体 / 低马赫数 / 有限元法 / 噪声抑制

Key words

deformable cavity / landing gear cabin / low Mach number / finite element method / noise suppression

引用本文

导出引用
翟庆波1,宁方立1,丁辉1,刘哲1,韦娟2,李宝清3. 基于可变形空腔的起落架舱体噪声抑制研究[J]. 振动与冲击, 2022, 41(3): 99-106
ZHAI Qingbo1, NING Fangli1, DING Hui1, LIU Zhe1, WEI Juan2, LI Baoqing3. Noise suppression of landing gear cabin based on deformable cavity[J]. Journal of Vibration and Shock, 2022, 41(3): 99-106

参考文献

[1] 王骁原,郭昊,邢宇等.LAGOON起落架缩比模型机轮空腔发声机理试验[J].航空学报,2017,38(05):68-76.
WANG Xiaoyuan,GUO Hao,XING Yu, et al. Mechanism test on aero acoustic characteristics of LAGOON landing gear wheel cavities[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(05):68-76(in Chinese).
[2]  Chu Z , Kuang F , Kang R , et al. Effects of airflow on the acoustic attenuation performance of reactive muffler[J]. Journal of Vibroengineering, 2016, 18(1):637-648.
[3] Lauterbach A, Ehrenfried K, Loose S, et al. Microphone array wind tunnel measurements of Reynolds number effects in high-speed train aeroacoustics[J]. International Journal of Aeroacoustics, 2012, 11(3-4):411-446.
[4] DONALD B B, RICHARD E H. Landing gear and cavity noise prediction:NASA CR-2714[R]. Washington, D.C.: Langley Research Center, 1976:2-3.
[5] 余培汛, 白俊强, 郭博智, 等. 剪切层形态对开式空腔气动噪声的抑制[J]. 振动与冲击, 2015, 34(1):156-164.
     YU Peixun, BAI Junqiang, GUO Bozhi,et al. Suppression of aerodynamic noise by altering the form of shear layer in open cavity[J]. Journal of Vibration and Shock,2015,34 ( 1) :156-164(in Chinese).
[6] 梁勇,陈迎春,赵鲲等.锯齿单元对起落架/舱体耦合噪声抑制试验[J].航空学报,2019,40(08):109-121.
 LIANG Y, CHEN Y C, ZHAO K, et al. Test on suppression of aircraft landing gear/bay coupling noise using sawtooth spoiler[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):109-121(in Chinese).
[7] De Jong A, Bijl H. Corner-Type Plasma Actuators for Cavity Flow-Induced Noise Control[J]. AIAA Journal, 2014, 52(1):33-42.
[8] 杨党国, 李建强, 梁锦敏. 基于CFD和气动声学理论的空腔自激振荡发声机理[J]. 空气动力学学报, 2010(06):106-112.
YANG Dangguo, LI Jianqiang, LIANG Jinmin. Sound generation induced by self-sustained oscillations inside cavities based on CFD and aeroacoustic theory[J]. Acta Aerodynamica Sinica, 2010, 28(6):724-730(in Chinese).
[9] 宁方立, 宁舜山, 石旭东, 等. 可变形状空腔噪声的数值仿真研究[J]. 振动与冲击, 2018, 37(19):239-246+266.
    NING Fangli, NING Shunshan, SHI Xudong, et al. Nu- merical simulation for deformable cavity noise. Journal of Vibration and Shock, 2018, 37(19): 239-246+266(in Chinese).
[10] Fangli N, Shunshan N, Changtong Z, et al. Numerical Simulation Study on Aeroacoustic Characteristics within Deformable Cavities. Shock and Vibration, 2019, 1–8.
[11] 宁方立, 卫金刚, 韦娟,等. 可变形空腔装置: CN201610168283.X[P]. 2016-07-13.
 [12] 刘哲, 宁方立, 张畅通等. 基于DMD方法的可变形状空腔流动模态分析[J]. 振动与冲击, 2020, 39(19): 218-225.
     LIU Zhe, NING Fangli, ZHANG Changtong, et al. Modal analysis of morphing cavities flow based on DMD method[J]. Journal of Vibration and Shock,2020, 39(19): 218-225(in Chinese).
[13] Ortiz S., Le Plenier C., Cobo P.. Efficient modeling and experimental validation of acoustic resonances in three-dimensional rectangular open cavities[J], Applied Acoustics , 2013, 74 (7):949-957.
[14] SHI D.Y., Liu G., ZHANG H., et al. A three-dimensional modeling method for the trapezoidal cavity and multi-coupled cavity with various impedance boundary conditions[J]. Applied Acoustics, 2019, 154:213-225.
[15] Diaz C.G., Ortiz S., Cobo P. Attenuation of acoustic resonances in an inclined open cavity using Micro Perforated Panels[C]. 43rd International Congress on Noise Control Engineering, INTER-NOISE 2014: Improving the World through Noise Control, Institute of Noise Control Engineering, Melbourne (2014).
[16] González L. M, Cobo P., Theofilis V., et al. Acoustic Resonances in 2D Open Cavities[J]. Acta Acustica united with Acustica, 2013, 99(4):572-581.

PDF(2538 KB)

Accesses

Citation

Detail

段落导航
相关文章

/