一类非线性时滞双曲型分布参数系统的振动条件

罗李平,曾云辉,罗振国

振动与冲击 ›› 2022, Vol. 41 ›› Issue (4) : 1-3.

PDF(1120 KB)
PDF(1120 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (4) : 1-3.
论文

一类非线性时滞双曲型分布参数系统的振动条件

  • 罗李平,曾云辉,罗振国
作者信息 +

Oscillation conditions of a class of nonlinear delay hyperbolic distributed parameter systems

  • LUO Liping,ZENG Yunhui,LUO Zhenguo
Author information +
文章历史 +

摘要

研究一类非线性时滞双曲型分布参数系统解的振动性问题, 利用积分平均法、广义Riccati变换和 型函数, 建立了该类系统在第三类边值条件下所有解振动的若干新的充分判据。所得结论充分显示这种振动性是由时滞引起的, 并给出一个实例来阐述主要结果的有效性。

Abstract

The oscillatory problems of solutions for a class of nonlinear delay hyperbolic distributed parameter systems are studied. By using integral averaging method, generalized Riccati transformation and   type function, some new sufficient criteria are established for oscillation of all solutions of the systems under third boundary value condition. The obtained results fully show that the oscillation is caused by delay and its effectiveness is illustrated by an example.

关键词

振动性 / 双曲型分布参数系统 / 非线性 / 时滞 / 广义Riccati变换 / 型函数

Key words

oscillation / hyperbolic distributed parameter system / nonlinear / delay / generalized Riccati transformation;   / type function

引用本文

导出引用
罗李平,曾云辉,罗振国. 一类非线性时滞双曲型分布参数系统的振动条件[J]. 振动与冲击, 2022, 41(4): 1-3
LUO Liping,ZENG Yunhui,LUO Zhenguo. Oscillation conditions of a class of nonlinear delay hyperbolic distributed parameter systems[J]. Journal of Vibration and Shock, 2022, 41(4): 1-3

参考文献

[1]LUO L P, LUO Z G, ZENG Y H. New results for oscillation of fractional partial differential equations with damping term[J].Discrete and Continuous Dynamical Systems Series S,2021,14(9):3223-3231.
[2]罗李平,罗振国,曾云辉.一类非线性脉冲中立抛物型分布参数系统的振动条件[J].数学物理学报,2020,40A(3):784-795.
(LUO Liping, LUO Zhenguo, ZENG Yunhui. Oscillation conditions of certain nonlinear impulsive neutral parabolic distributed parameter systems[J].Acta Mathematica Scientia,2020,40A(3):784-795.)
[3]LUO Z G, LUO L P, ZENG Y H. Oscillation results for BVPs of even order nonlinear neutral partial differential equations[J].Journal of Nonlinear Modeling and Analysis,2019,1(2):261-270.
[4]罗李平,罗振国,邓义华.脉冲扰动对非线性时滞双曲型分布参数系统振动的影响[J].数学物理学报,2018,38A(2):313-321.
(LUO Liping, LUO Zhenguo, DENG Yihua. Effect of impulsive perturbations on oscillation of nonlinear delay hyperbolic distributed parameter systems[J].Acta Mathematica Scientia,2018,38A(2):313-321.)
[5]罗李平,罗振国,杨柳.具脉冲扰动和时滞效应的拟线性抛物系统的(强)振动分析[J].应用数学学报,2016,39(1):21-30.
(LUO Liping, LUO Zhenguo, YANG Liu. (Strong) oscillation analysis of quasilinear parabolic systems with impulse perturbation and delay effect[J].Acta Mathematicae Applicatae Sinica,2016,39(1):21-30.)
[6]马晴霞,刘安平.脉冲时滞中立双曲型方程组的振动性[J]数学物理学报,2016,36A(3):462-472.
(MA Qingxia, LIU Anping. Oscillation of neutral impulsive hyperbolic Systems with deviating arguments[J].Acta Mathematica Scientia,2016,36A(3):462-472.)
[7]HARIKRISHNAN S, PRAKASH S P, NIETO J J. Forced oscillation of nonlinear impulsive functional hyperbolic differential system[J].Communications in Applied Analysis,2014,18(3):523-536.
[8]MA Q X, LIU A P. Oscillation criteria of neutral type impulsive hyperbolic equations[J].Acta Mathematica Scientia,2014,34B(6):1845-1853.
[9]Ning X Q, You S J. Oscillation of the systems of impulsive hyperbolic partial differential equations[J].Journal of Chemical and Pharmaceutical Research,2014,6(7):1370-1377.
[10]罗李平,曾云辉,罗振国.具脉冲和时滞效应的拟线性双曲系统的振动性定理[J].应用数学学报,2014,37(5):824-834.
(LUO Liping, Zeng Yunhui, LUO Zhenguo. Oscillation theorems of quasilinear hyperbolic systems with effect of impulse and delay[J].Acta Mathematicae Applicatae Sinica,2014,37(5):824-834.)

PDF(1120 KB)

778

Accesses

0

Citation

Detail

段落导航
相关文章

/