爆炸冲击下水底隧道的动态响应及毁伤模式研究

杨广栋1,2,王高辉2,李麒3,陆春华4,卢文波2,周俊汝2,赵金帅4

振动与冲击 ›› 2022, Vol. 41 ›› Issue (4) : 150-158.

PDF(2513 KB)
PDF(2513 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (4) : 150-158.
论文

爆炸冲击下水底隧道的动态响应及毁伤模式研究

  • 杨广栋1,2,王高辉2,李麒3,陆春华4,卢文波2,周俊汝2,赵金帅4
作者信息 +

Dynamic response and damage patterns of underwater tunnel subjected to blast loads

  • YANG Guangdong1,2,WANG Gaohui2,LI Qi3,LU Chunhua4,LU Wenbo2,ZHOU Junru2,ZHAO Jinshuai4
Author information +
文章历史 +

摘要

考虑炸药起爆、冲击波传播、冲击波与结构的相互作用以及结构的动态响应等复杂过程,基于Lagrange-Euler耦合算法,建立了水底隧道水下爆炸的全耦合数值仿真模型。通过与爆炸试验结果进行对比,验证了数值模型的可靠性;研究了水下爆炸冲击荷载作用下的水底隧道的毁伤破坏过程、空间分布规律及破坏模式。结果表明:水底隧道的破坏模式不仅与隧道自身的动力特性有关,还取决于起爆距离及炸药当量等;隧道可能的破坏模式为局部冲切或剥落破坏、弯曲破坏伴随着局部剥落破坏以及整体弯曲破坏。

Abstract

A fully coupled numerical model of an underwater tunnel, considering complex processes such as explosive initiation, shock wave propagation, shock wave and structure interaction, and structural response, is established based on the Lagrange-Euler coupling algorithm. The reliability of the numerical model is verified against the experimental data. The damage process, damage characteristics and failure patterns of the underwater tunnel subjected to blast loads are studied. The results show that the failure mode of the tunnel is not only related to the dynamic characteristics of the tunnel itself, but also depends on the detonation distance and explosive equivalent; the potential failure modes of the tunnel are local punching or spall failure, bending failure accompanied by local spall damage and global bending failure.

关键词

水底隧道 / 爆炸冲击 / 动力响应 / 毁伤模式

Key words

underwater tunnel / blast loading / dynamic response / failure patterns.

引用本文

导出引用
杨广栋1,2,王高辉2,李麒3,陆春华4,卢文波2,周俊汝2,赵金帅4. 爆炸冲击下水底隧道的动态响应及毁伤模式研究[J]. 振动与冲击, 2022, 41(4): 150-158
YANG Guangdong1,2,WANG Gaohui2,LI Qi3,LU Chunhua4,LU Wenbo2,ZHOU Junru2,ZHAO Jinshuai4. Dynamic response and damage patterns of underwater tunnel subjected to blast loads[J]. Journal of Vibration and Shock, 2022, 41(4): 150-158

参考文献

[1] 崔  溦,卢珊珊,宋慧芳,等. 爆炸荷载作用下大型箱涵安全性的SPH-FEM耦合分析[J]. 天津大学学报. 2012, 45(09): 838-844.
CUI Wei, LU Shan-shan, SONG Hui-fang, et al. Coupled SPH-FEM for safety analysis of large-scale box culvert under blasting load [J]. Journal of Tianjin University, 2012, 45(09): 838-844.
 [2] 张  景,封  坤,何  川,等. 内爆炸作用下公轨合建盾构法隧道非封闭式内衬结构动力响应及抗爆性能分析[J]. 振动与冲击. 2017, 36(09): 231-238.
ZHANG Jing, FENG Kun, HE Chuan, et al. Dynamic response and anti-explosion behavior analysis for combined railway and roadway shield tunnel’s unclosed inner lining structure under internal explosion [J]. Journal of Vibration and Shock, 2017, 36(09): 231-238.
 [3] 高  盟,张继严,王  滢,等. 内源爆炸荷载作用下饱和土中圆形衬砌隧道的瞬态响应解答[J]. 岩土工程学报. 2017, 39(12): 2304-2311.
GAO Meng, ZHANG Ji-yan, WANG Ying,et al. Exact solutions for dynamic responses of a cylindrical lined tunnel in saturated soil to internal blast loads [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2304-2311.
 [4] 顾金才,陈安敏,徐景茂,等. 在爆炸荷载条件下锚固洞室破坏形态对比试验研究[J]. 岩石力学与工程学报. 2008(07): 1315-1320.
GU Jin-cai, CHEN An-min, XU Jing-mao, et al. Model test study of failure patterns of anchored tunnel subjected to explosion load [J]. Chinese Journal of Rock Mechanics and Engineering, 2008(07): 1315-1320.
 [5] 罗  刚,潘少康,周晓军,等. 水下非接触爆炸冲击作用下悬浮隧道动力响应[J]. 中国公路学报. 2018, 31(6): 244-253.
LUO Gang, PAN Shao-kang, ZHOU Xiao-jun, et al. Dynamic response of a submerged floating tunnel during non-contact underwater explosions [J]. China journal of highway and transport, 2018, 31(6): 244-253.
 [6] Stolz A, Stolz A, Ruiz-Ripoll M L, et al. Experimental and Computational Characterization of Dynamic Loading and Structural Resistance of Tunnels in Blast Scenarios[J]. Fire Technology. 2016, 52(5): 1595-1618.
 [7] Kristoffersen M, Minoretti A, Børvik T. On the internal blast loading of submerged floating tunnels in concrete with circular and rectangular cross-sections [J]. Engineering Failure Analysis. 2019, 103: 462-480.
 [8] 赵跃堂,易义君,储  程. 一种提高管片隧道衬砌结构抗内爆炸性能的工程措施研究[J]. 振动与冲击. 2017, 36(08): 41-47.
ZHAO Yue-tang, YI Yi-jun, CHU Cheng. A method to improve internal explosion resistance performance of segmental lining structures [J]. Journal of Vibration and Shock, 2017, 36(08): 41-47.
 [9] 章  毅,周布奎,于  潇,等. 地面炸药库爆炸对地铁隧道的影响[J]. 防护工程. 2019, 41(03): 33-37.
ZHANG Yi, ZHOU Bu-kui, YU Xiao, et al. Effect of accidental explosion of ground explosive depot on metro tunnel [J]. Protective engineering, 2019, 41(03): 33-37.
[10] Mussa M H, Mutalib A A, Hamid R, et al. Assessment of damage to an underground box tunnel by a surface explosion [J]. Tunnelling and Underground Space Technology. 2017, 66: 64-76.
[11] Yang G D, Wang G H, Lu W B, et al. Cross-section shape effects on anti-knock performance of RC columns subjected to air and underwater explosions[J]. Ocean engineering. 2019, 181: 252-266.
[12] 闫秋实,宁素瑜,杜修力,等. 水中近场爆炸作用下钢筋混凝土桩毁伤效应研究[J]. 北京工业大学学报. 2019, 45(2): 153-159.
YAN Qiu-shi, NING Su-yu, DU Xiu-li, et al. Damage effect for a typical reinforced concrete pile under the near field explosion in water [J]. Journal of Beijing University of Technology, 2019, 45(02): 153-159.
[13] Zhao X H, Wang G H, Lu W B, et al. Experimental investigation of RC slabs under air and underwater contact explosions [J]. European Journal of Environmental and Civil Engineering. 2018: 1-15.
[14] Yang G D, Wang G H, Lu W B, et al. Experimental and numerical study of damage characteristics of RC slabs subjected to air and underwater contact explosions [J]. Marine Structures. 2019, 66: 242-257.
[15] 王高辉,张社荣,卢文波,等. 水下爆炸冲击荷载下混凝土重力坝的破坏效应[J]. 水利学报. 2015, 46(6): 723-731.
WANG Gao-hui, ZHANG She-rong, LU Wen-bo, et al. Damage effects of concrete gravity dams subjected to underwater explosion [J]. SHUILI XUEBAO, 2015, 46(6): 723-731.
[16] 李麒,王高辉,卢文波,等. 库前水位对混凝土重力坝抗爆安全性能的影响[J]. 振动与冲击. 2016, 35(14): 19-26.
LI Qi, WANG Gao-hui, LU Wen-bo, et al. Influence of water level on the antiknock safety performance of concrete gravity dam [J]. Journal of Vibration and Shock, 2016, 35(14): 19-26.
[17] 李凌锋,韦灼彬,唐廷,等. 爆炸荷载下沉箱重力式码头模型毁伤效应[J]. 爆炸与冲击. 2019, 39(01): 13-19.
LI Ling-feng, WEI Zhuo-bin, TANG Ting, et al. Damage effects of the caisson gravity wharf model subjected to explosion [J]. Explosion and shock waves, 2019, 39(01): 13-19.
[18] 任鹏,田阿利,张伟,等. 水下冲击波载荷作用下气背固支圆板动态毁伤实验[J]. 爆炸与冲击. 2016, 36(05): 617-624.
REN Peng, TIAN A-li, ZHANG Wei, et al. Failure mode of clamped air-back circular panel subjected to underwater shock loading [J]. Explosion and shock waves, 2016, 36(05): 617-624.
[19] Ming F R, Zhang A M, Xue Y Z, et al. Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions[J]. Ocean Engineering. 2016, 117: 359-382.
[20] Brannon R M, Leelavanichkul S. Survey of four damage models for concrete [J]. Sandia National Laboratories. 2009, 32(1): 1-80.
[21] Riedel W, Thoma K, Hiermaier S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]. Berlin-Strausberg Germany, 1999.
[22] ANSYS Inc. AUTODYN user manual version 13[M]; 2010.
[23] Lee E L, Hornig H C, Kury J W. Adiabatic expansion of high explosive detonation products [R]. UCRL-50422, Lawrence Radiation Laboratory, University of California, 1968.
[24] Grujicic M, Pandurangan B, Zhao C L, et al. A computational investigation of various water-induced explosion mitigation mechanisms [J]. Multidiscipline Modeling in Materials and Structures, 2007, 3(2), 185-212.
[25] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperature [C]. Proceedings of the 7th International Symposium on Ballistics, 1983.

PDF(2513 KB)

Accesses

Citation

Detail

段落导航
相关文章

/