阀门内漏识别及内漏速率量化技术研究

朱沈宾1,2,李振林1,王西明2,李想2,张鸣远1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (4) : 167-175.

PDF(1706 KB)
PDF(1706 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (4) : 167-175.
论文

阀门内漏识别及内漏速率量化技术研究

  • 朱沈宾1,2,李振林1,王西明2,李想2,张鸣远1
作者信息 +

A study on valve internal leakage identification and leakage rate quantification

  • ZHU Shenbin1,2,LI Zhenlin1,WANG Ximing2,LI Xiang2,ZHANG Mingyuan1
Author information +
文章历史 +

摘要

阀门作为天然气管线的关键部件,若发生内漏会带来经济损失及生产安全隐患。因此,阀门内漏的有效诊断及内漏速率的准确量化具有重大意义。针对复杂背景噪声下内漏诊断效率不高的问题,以内漏信号和非泄漏噪声信号的功率谱密度图作为输入,构建了阀门内漏卷积神经网络(convolutional neural network,CNN)识别模型;针对物理理论及浅层网络模型在多工况阀门内漏数据上存在量化误差大的问题,构建了阀门内漏速率深度信念网络(deep belief network,DBN)量化回归模型,并与支持向量回归机、BP神经网络等模型进行了对比研究。研究结果表明:所构建模型的内漏识别准确率及内漏速率量化平均绝对百分比误差分别为99%、9.1012,证实了所构建模型的高效性,为阀门内漏诊断与评价开拓了新的研究方向。

Abstract

Valve is a vital component in the natural gas pipeline. If internal leakage occurs, it will bring economic losses and potential production safety hazards. Therefore, the effective diagnosis of valve internal leakage and accurate quantification of internal leakage rate are of great significance. Aiming at the problem of low efficiency of internal leakage diagnosis under complex background noise, based on the power spectral density of internal leakage acoustic signals and non-leakage noise signals, convolutional neural network(CNN) identification models of valve internal leakage were proposed. Aiming at the problem of large quantization error of physical theory and shallow network models in multi-conditions internal leakage data-sets, the deep belief network(DBN) regression model of valve internal leakage rate was proposed, and compared with traditional models such as support vector regression and back propagation neural network. The results show that the valve internal leakage diagnosis accuracy is 99% and the MAPE of internal leakage rate quantification is 9.1012, which proves the efficiency of the proposed models and opens up a new research direction for valve internal leakage diagnosis and evaluation.

关键词

阀门内漏识别 / 内漏速率 / 卷积神经网络(CNN) / 深度信念网络(DBN)

Key words

valve internal leakage identification / leakage rate / convolutional neural network(CNN) / deep belief network(DBN)

引用本文

导出引用
朱沈宾1,2,李振林1,王西明2,李想2,张鸣远1. 阀门内漏识别及内漏速率量化技术研究[J]. 振动与冲击, 2022, 41(4): 167-175
ZHU Shenbin1,2,LI Zhenlin1,WANG Ximing2,LI Xiang2,ZHANG Mingyuan1. A study on valve internal leakage identification and leakage rate quantification[J]. Journal of Vibration and Shock, 2022, 41(4): 167-175

参考文献

[1] 鄂向辉. 浅析管道系统阀门分类及选用[J]. 玻璃,2010, 37(3):20-23.
E Xiang-hui. Discussion on the classification and choice of valves in pipe system[J]. Glass, 2010, 37(3):20-23.
[2] J.L. Lyons, Lyons’ valve designer’s handbook[M]. Van Nostrand Reinhold Co, 1982.
[3] Juvik T , Hermansen T , Carr R , et al. Online valve monitoring systems used on off-shore platforms in the north sea[C]// Asme International Conference on Offshore Mechanics & Arctic Engineering. 2002, 2:333-337.
[4] Leon R L , Heagerty D Q . Method and apparatus for on-line detection of leaky emergency shut down or other valves[P]. US6128946 A, 10-24-2000.
[5] Meland E , Thornhill N F , Lunde E , et al. Quantification of valve leakage rates[J]. Aiche Journal, 2012, 58(4):1181-1193.
[6] Thompson G , Zolkiewski G . An experimental investigation into the detection of internal leakage of gases through valves by vibration analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 1997, 211(3):195-207.
[7] Sharif M A , Grosvenor R I . Internal valve leakage detection using an acoustic emission measurement system[J]. Transactions of the Institute of Measurement and Control, 1998, 20(5):233-242.
[8] Puttmer A , Rajaraman V . P3F-6 Acoustic Emission Based Online Valve Leak Detection and Testing[C]// Ultrasonics Symposium, NY : IEEE, 2007. 1854-1857.
[9] 沈功田,戴光,刘时风. 中国声发射检测技术进展——学会成立25周年纪念[J]. 无损检测,2003(6):302-307.
Shen Gongtian, Dai Guang, Liu Shifeng. Acoustic Emission Testing Progress in China: Celebration for the 25th Anniversary of Chinese Society for NDT[J]. Nondestructive Testing, 2003(6):302-307.
[10] 唐博强,刘鹏,王鑫. 基于声发射理论的气体介质阀门内漏检测研究[J]. 云南化工,2017, 44(10):17-19.
Tang Boqiang, Liu Peng, Wang Xin. Detection of valve internal air leakage based on acoustic emission theory[J]. Yunnan Chemical Technology, 2017, 44(10):17-19.
[11] 刘贵杰,徐萌,王欣,等. 基于HHT的管道阀门内漏声发射检测研究[J]. 振动与冲击,2012, 31(23):62-66.
Liu Guijie, Xu Meng,Wang Xin, et al. AE detection for pipeline valve leaklage based on HHT[J]. Journal of Vibration and Shock, 2012, 31(23):62-66.
[12] 张璐莹,张宏远,徐洋,等. 气体阀门内漏声发射信号特征提取方法研究[J]. 油气田地面工程,2019, 38(12):20-26.
Zhang Luying, Zhang Hongyuan, Xu Yang, et al. Research on feature extraction method of internal leakage acoustic emission signals in gas valves[J]. Oil-Gasfield Surface Engineering, 2019, 38(12):20-26.
[13] 贾招弟. 石化装置气体阀门内漏声学检测研究[D]. 大庆: 东北石油大学,2016.
Jia Zhaodi. Research on acoustic detection of gas valve leakage in petrochemical plant[D]. Daqing: Northeast Petroleum University, 2016.
[14] Lee M R , Lee J H , Kim J T . Condition Monitoring of a Nuclear Power Plant Check Valve Based on Acoustic Emission and a Neural Network[J]. Journal of Pressure Vessel Technology, 2005, 127(3):230-236.
[15] 王文亮,王芳,吴石恩,等. 阀门内漏单声波传感器监测方法研究[J]. 化工学报,2019, 70(S1):248-256.
Wang Wenliang, Wang Fang, Wu Enshi, et al. Research on valve internal leakage monitoring based on single acoustic sensor[J]. CIESC Jorunal, 2019, 70(S1):248-256.
[16] 林伟国,吴石恩. 阀门内漏声波监测及其信号特征提取方法[J]. 振动与冲击, 2018, 37(9): 120-126.
LIN Weiguo WU Shien. Acoustic monitoring and signal feature extraction for valve internal leakage[J]. Journal of Vibration and Shock, 2018, 37(9): 120-126.
[17] 王新颖. 承压阀门内漏声学检测方法研究[D]. 大庆: 大庆石油学院,2004.
[18] 李振林, 张海峰, 夏广辉. 基于声发射理论的阀门气体内漏量化检测研究[J]. 振动与冲击, 2013, 32(15):77-81.
Li Zhenlin, Zhang Haifeng, Xia Guanghui. Quantitative detection of valve internal air leakage based on acoustic emission theory[J]. Journal of Vibration and Shock, 2013, 32(15):77-81.
[19] 王琼,朱亮,贾润中,等. 基于声发射技术气体阀门内漏率诊断研究[J]. 安全、健康和环境,2017, 17(1):13-16.
Wang Qiong, Zhu Liang, Jia Runzhong, et al. Experimental research on valve inner leakage rate diagnosis technology based on acoustic emission detecting[J]. Safety Health & Environment, 2017, 17(1):13-16.
[20] 李伟,马云栋,蒋鹏,等. 基于声学检测系统理论的输油管道阀门内漏问题分析[J]. 压力容器,2017, 34(12):55-62.
Li Wei, Ma Yundong, Jiang Peng, et al. Study on leakage of oil pipeline valve based on acoustic detection system theory[J]. Pressure Vessel Technology, 2017, 34(12):55-62.
[21] 陈修高. 阀门气体内漏流场及声学特性研究[D]. 兰州: 兰州理工大学,2019.
Chen Xiugao. Study on flow field and acoustic characteristics of valve gas leakage[D]. Lanzhou: Lanzhou University of Technology, 2019.
[22] Prateepasen A , Kaewwaewnoi W , Kaewtrakulpong P . Smart portable noninvasive instrument for detection of internal air leakage of a valve using acoustic emission signals[J]. Measurement, 2011, 44(2):378-384.
[23] El-Shorbagy K A . An investigation into noise radiation from flow control valves with particular reference to flow rate measurement[J]. Applied Acoustics, 1983, 16(3):169-181.
[24] 龙飞飞,刘永轩,王琼,等. 气体阀门内漏声发射评价参量研究及其应用[J]. 声学技术,2020, 39(1):104-109.
Long Feifei, Liu Yongxuan, Wang Qiong, et al. Study of an acoustic emission evaluation parameter in gas valve inner leakage testing and its application[J]. Technical Acoustics, 2020, 39(1):104-109.
[25] 付佳. 阀门内漏气动声场的实验和数值模拟研究[D]. 兰州: 兰州理工大学,2018.
Fu Jia. Study on the experimental and numerical simulation of aerodynamic sound field in valve leakage[D]. Lanzhou: Lanzhou University of Technology, 2019.
[26] Ye G Y , Xu K J , Wu W K . Multivariable modeling of valve inner leakage acoustic emission signal based on Gaussian process[J]. Mechanical Systems and Signal Processing, 2020, 140:106675.
[27] 张海峰,谭东杰,李柏松,等. 基于背景噪声降噪的管道阀门内漏量化检测[J]. 油气储运,2017, 36(2):214-219.
Zhang Haifeng, Tan Dongjie, Li Bosong, et al. Quantitative detection on internal leakage rate of pipeline valves based on background noise reduction[J]. Oil & Gas Storage and Transportation, 2017, 36(2):214-219.
[28] Li Z L, Zhang H F, Tan D J, et al. A novel acoustic emission detection module for leakage recognition in a gas pipeline valve [J]. Process Safety & Environmental Protection, 2017, 105:32-40.
[29] 韩国星. 阀门内漏声发射智能检测技术及系统研发[D]. 青岛: 中国石油大学(华东),2016.
Han Guoxing. Acoustic Emission Intelligent Detecting Technique and System Development for Internal Valve Leakage[D]. Qingdao: China University of Petroleum(East China), 2016.
[30] 梁乐乐. 阀门内漏仪器集成开发及实验研究[D]. 北京: 中国石油大学(北京),2018.
Liang Lele. Development of Internal Valve Leakage Detection Instrument and Experimental Research[D]. Beijing: China University of Petroleum (Beijing), 2018.
[31] 吴岸城. 神经网络与深度学习[M]. 北京: 电子工业出版社,2016.
Wu Ancheng. Neural Network and Deep Learning[M].Beijing: Publishing House of Electronics Industry, 2016.
[32] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge [J]. International Journal of Computer Vision, 2015, 115(3):211-252.
[33] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7):1527-1554.
[34] Tanaka M, Okutomi M. A novel inference of a restricted boltzman machine [C]//International Conference on Pattern Recognition. Stockholm: IEEE, 2014. 1526-1531
[35] S.I. Wang, C.D. Manning. Fast dropout training [C]//Proceedings of the 30th International Conference on Machine Learning. 2013. 118-126.

PDF(1706 KB)

1855

Accesses

0

Citation

Detail

段落导航
相关文章

/