平面钢框架在撞击荷载作用下的抗连续倒塌分析

乔惠云1, 2,郭壮壮1,陈誉2,张明锋3,丘华生4,王征5

振动与冲击 ›› 2022, Vol. 41 ›› Issue (4) : 176-184.

PDF(1823 KB)
PDF(1823 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (4) : 176-184.
论文

平面钢框架在撞击荷载作用下的抗连续倒塌分析

  • 乔惠云1, 2,郭壮壮1,陈誉2,张明锋3,丘华生4,王征5
作者信息 +

Anti-progressive collapse analysis for plane steel frame under impact load

  • QIAO Huiyun1,2,GUO Zhuangzhuang1,CHEN Yu2,ZHANG Mingfeng3,QIU Huasheng4,WANG Zheng5
Author information +
文章历史 +

摘要

各种自然灾害和人为因素都可能造成结构连续倒塌,抗连续倒塌研究经常抛开引起倒塌破坏的原因,直接拆除关键柱,研究剩余结构的抗倒塌性能。本文以平面框架受撞击荷载为例分析具体灾害对框架结构抗倒塌性能的影响,提出一种撞击力简化模型,分析结构体系对撞击力的激励反应,并将撞击拆柱法模拟结果与传统直接拆柱法结果对比,分析两种方法对结构破坏模式与动力性能的影响,然后研究不同质量、速度、能量的撞击块对框架结构撞击后的响应。研究结果表明撞击拆柱法使节点应力分布复杂,引起相邻节点和构件损伤,使关键柱失效后剩余结构的受力方式和破坏模式发生变化,而传统直接拆柱法低估了剩余结构的动力响应;另外,框架结构的动力特性与撞击能量密切相关,特别受撞击速度影响最大。

Abstract

Many natural disasters and man-made factors may cause the progressive collapse of structures. The research on anti-progressive collapse usually puts aside the causes of collapse and directly demolishes the key columns to study the anti-collapse performance of the remaining structure. In this paper, the plane steel frame subjected to impact load was taken as an example to analyze the specific anti-collapse performance of the frame structure. A simplified impact force model was proposed to analyze the excitation response of the structural system to the impact force. The simulation results of the impact column removal method were compared with those of the traditional direct column removal method, and the influences of the two methods on the failure mode and dynamic performance were analyzed and then the impact responses of the impact blocks with different mass, velocity and energy to the frame structure were studied. The results show that the impact column removal method makes the joint stress distribution complex, causes damage to adjacent joints and components, and changes the stress and failure mode,while the traditional direct column removal method underestimates the dynamic response of the remaining structure; in addition, the dynamic characteristics of frame structure are closely related to the impact energy, especially the impact velocity.

关键词

连续性倒塌 / 多层框架结构 / 直接拆柱法 / 撞击拆柱法 / 动力效应

Key words

progressive collapse / multi-story frame structure / direct column removal method / impact column removal method / impact load

引用本文

导出引用
乔惠云1, 2,郭壮壮1,陈誉2,张明锋3,丘华生4,王征5. 平面钢框架在撞击荷载作用下的抗连续倒塌分析[J]. 振动与冲击, 2022, 41(4): 176-184
QIAO Huiyun1,2,GUO Zhuangzhuang1,CHEN Yu2,ZHANG Mingfeng3,QIU Huasheng4,WANG Zheng5. Anti-progressive collapse analysis for plane steel frame under impact load[J]. Journal of Vibration and Shock, 2022, 41(4): 176-184

参考文献

[1] 周洲, 吕大刚, 于晓辉.基于文献调研的我国建筑结构地震倒塌风险概率评估[J]. 建筑结构学报, 2020, 41(8): 1-8.
ZHOU Zhou, LU Dagang, YU Xiaohui. Probabilistic assessment of seismic collapse risk for building structures in China based on literature investigation[J]. Journal of Building Structures, 2020, 41(8): 1-8.
[2] 范重, 陈亚丽, 陈巍, 张宇, 刘涛. 某航站楼在爆炸作用下抗倒塌性能研究[J]. 建筑结构学报, 2020, 41(9): 33-44.
FAN Zhong, CHEN Yali, CHEN Wei, ZHANG Yu, LIU Tao. Anti-collapse performance of terminal building under blast loads[J]. Journal of Building Structures, 2020, 41(9): 33-34.
[3] CORLEY, WG. Lessons learned on improving resistance of buildings to terrorist attacks[J]. Journal of Performance of Constructed Facilities ,2004, 18 (2): 68–78.
[4] 中国工程建设标准化协会. 建筑结构抗倒塌设计规范CECS 392: 2014 [S]. 北京: 中国计划出版社, 2014.
[5] YANG B, TAN KH. Experimental tests of different types of bolted steel beam-column joints under a central-column-removal scenario [J]. Engineering Structures, 2013, 54: 112-130.
[6] 王伟, 李玲, 陈以一, 严鹏. 方钢管柱-H形栓焊混合连接节点抗连续性倒塌性能试验研究[J]. 建筑结构学报, 2014, 35(4): 92-99.
WANG Wei, LI Ling, CHEN Yiyi, YAN Peng. Experimental investigation on progressive collapse behavior of WUF-B connections between SHS column and H beam [J]. Journal of Building Structures, 2014, 35(4): 92-99.
[7] ZHONG WH, MENG B, HAO JP. Performance of different stiffness connections against progressive collapse [J]. Journal of Constructional Steel Research, 2017, 135: 162-175.
[8] CHEN Canwen, QIAO Huiyun, WANG Jinpeng, CHEN Yu. Progressive collapse behavior of joints in steel moment frames involving reduced beam section[J]. Engineering Structures 2020, 225(12):111297.
[9] QIAO Huiyun, CHEN Yu, WANG Jinpeng, CHEN Canwen. Experimental study on beam-to-column connections with reduced beam section against progressive collapse [J]. Journal of Constructional Steel Research, 2020, 175 (12): 106358.
[10] 李国强, 李六连, 陆勇. 平面钢框架瞬时冲击去柱抗连续性倒塌试验研究 [J]. 振动与冲击, 2017, 36(11): 48-56.
LI Guoqiang, LI Liulian, LU Yong. Tests for progressive collapse of planar steel frames under a column sudden removal [J]. Journal of vibration and shock, 2017, 36(11): 48-56.
[11] 谢甫哲, 舒赣平. 平面钢框架结构抗倒塌动力试验研究 [J]. 建筑结构学报, 2016, 37 (12): 144-152.
XIE Fuzhe, SHU Ganping. Dynamic experiment on collapse-resistant behavior of plane steel frame structure [J]. Journal of Building Structures, 2016, 37 (12): 144-152.
[12] 易伟建, 何庆锋, 肖岩. 钢筋混凝土框架结构抗倒塌性能的试验研究[J]. 建筑结构学报, 2007, 28 (5): 104-109.
YI Weijian, HE Qingfeng, XIAO Yan. Collapse performance of RC frame structure[J] Journal of Building Structures, 2007, 28(5): 104-109.
[13]  LU X, Lin K, Li Y, et al. Experimental investigation of RC beam-slab substructures against progressive collapse subject to an edge-column-removal scenario [J]. Engineering Structures, 2016, 149: 91-103.
[14] QIAN K, Li B. Dynamic and residual behavior of reinforced concrete floors following instantaneous removal of a column [J]. Engineering Structures, 2017, 148: 175-184.
[15] 钱稼茹, 胡晓斌. 多层钢框架连续倒塌动力效应分析[J]. 地震工程与工程振动, 2008(02): 8-14.
QIAN Jiaru, HU Xiaobin. Dynamic effect analysis of progressive collapse of multi-story steel frames[J]. Journal of earthquake engineering and Engineering Vibration, 2008(02): 8-14.
[16] XU G, ELLINGWOOD B R. An energy-based partial pushdown analysis procedure for assessment of disproportionate collapse potential[J]. Journal of Constructional Steel Research, 2011, 67: 547-555.
[17] ALASHKER Y, EL-TAWIL S. A design-oriented model for the collapse resistance of composite floors subjected to column loss[J]. Journal of Constructional Steel Research, 2011, 67: 84–92
[18] 师燕超, 李忠献. 爆炸荷载作用下钢筋混凝土结构破坏倒塌分析研究进展[J]. 土木工程学报, 2010, 43(S2): 83-92.
SHI Yanchao, LI Zhongxian. State-of-the-art in damage and collapse analysis of RC Structures under blast loading [J]. China civil engineering journal, 2010, 43(S2): 83-92.
[19] 朱翔, 陆新征, 杜永峰, 叶列平. 外包钢管加固RC柱抗冲击试验研究[J]. 工程力学, 2016, 33(06): 23-33.
ZHU Xiang, LU Xinzheng, DU Yongfeng, YE Lieping. Experimental study on impact resistance of reinforced concrete columns strengthened with steel jackets [J]. Engineering Mechanics, 2016, 33(06): 23-33.
[20] 朱翔, 陆新征, 杜永峰, 叶列平. 新型复合柱抗冲击试验研究及有限元分析[J].工程力学, 2016, 33(08): 158-166+220.
ZHU Xiang, LU Xinzheng, DU Yongfeng, YE Lieping. Experimental study and finite element analysis of impact resistance of novel composite columns [J]. Engineering Mechanics, 2016, 33(08): 158-166+220.
[21] WANG R, HAN LH, HOU CC. Behavior of concrete filled steel tubular (CFST) members under lateral impact: Experiment and FEA model[J]. Journal of Constructional Steel Research, 2013, 80 (12) 188-201.
[22] 史艳莉, 鲜威, 王蕊, 王文达. 方套圆中空夹层钢管混凝土组合构件横向撞击试验研究[J]. 土木工程学报, 2019, 52(12): 146-155.
SHI Yanli, XIAN Wei, WANG Rui, WANG Wenda. Experimental study on circular-in-square concrete filled double-skin steel tubular (CFDST) composite components under lateral impact[J]. China civil engineering journal, 2019, 52(12): 146-155.
[23] HUO J, ZHANG J, LIU Y, et al. Dynamic behaviour and catenary action of axially-restrained steel beam under impact loading [J]. Structures, 2017, 11: 84-96.
[24] QIAO Huiyun, LUO Caisong, WEI Jianpeng, CHEN Yu. Progressive Collapse Analysis for Steel-Braced Frames Considering Vierendeel Action [J]. Journal of Performance of Constructed Facilities, 2020, 34(4): 04020069.
[25] 张月强, 丁洁, 张峥. 大跨度钢结构抗连续倒塌动力分析关键问题研究[J].建筑结构学报, 2014, 35( 4 ): 49-56.
ZHANG Yueqian, DING Jie, ZHANG Zheng. Study on key issues of dynamic analysis for anti-progressive collapse of large span steel structure [J]. Journal of Building Structures, 2014, 35( 4 ): 49-56.
[26] SCHOLL N, MINUTH-HADI F, THIELE K. Modelling the strain rate dependent hardening of constructional steel using semi-empirical models [J]. Journal of Constructional Steel Research, 2018, 145: 414-424.
[27] WEI JP, TIAN LM, HAO JP. Parameter analysis of progressive collapse simulation of long-span spatial grid structures [J]. International journal of steel structures, 2019, 19 (6): 1718-1731.
[28] ABRAMOWICZ W, JONES N. Dynamic axial crushing of square tubes[J]. International Journal of Impact Engineering, 1984, 2(2): 179-208.
[29] Kang H, Kim J. Progressive collapse of steel moment frames subjected to vehicle impact [J]. Journal of Performance of Constructed Facilities, 2014, 29(6): 04014172.
[30] Chopra A. K. 结构动力学: 理论及其在地震工程中的应用 [M]. 谢礼立, 吕大刚等, 译. 北京: 高等教育出版社, 2007
[31] 周天华, 李文超, 管宇, 白亮. 基于应力三轴度的钢框架循环加载损伤分析[J]. 工程力学, 2014, 31(07): 146-155.
ZHOU Tianhua, LI Wenchao, GUAN Yu, BAI Liang. Damage analysis of steel frames under cycle load based on stress triaxiality [J]. Engineering Mechanics, 2014, 31(07): 146-155.
[32] SCHOLL N, MINUTH-HADI F, THIELE K. Modelling the strain rate dependent hardening of constructional steel using semi-empirical models [J]. Journal of Constructional Steel Research, 2018, 145: 414–424.
[33] SOMARATHNA HMCC, RAMAN SN, MOHOTTI D, et al. Hyper-viscoelastic constitutive models for predicting the material behavior of polyurethane under varying strain rates and uniaxial tensile loading [J]. Construction and Building Materials, 2020, 236: 117417.

PDF(1823 KB)

Accesses

Citation

Detail

段落导航
相关文章

/