本文基于欧拉伯努利梁理论,利用Lagrange法建立了楔形和锥形截面梁在外激作用下的非线性微分方程。提出了一种基于Bessel函数和Meijer-G函数线性组合的无需迭代及近似截断的振型函数,且该振型函数不依赖于楔形和锥形变截面梁的弯曲振动的运动方程是否为标准的Bessel形式,该方法能快速求解线性基频和模态函数。随后将该方法得到的模态函数代入变截面悬臂梁非线性振动的控制方程中,得到了常微分方程的弯曲非线性系数及惯性非线性系数,最后利用多尺度法研究主共振下的幅频响应。结果表明,本文方法得到的线性基频及非线性幅频响应曲线与已有文献结果高度吻合,充分验证了用本文提出的方法求解的振型函数具有很高的精确性,该方法可为楔形或锥形变截面悬臂梁模态函数解析解提供新思路。
Abstract
In this paper, a nonlinear differential equation model of wedge and cone cantilever beams under external excitation is investigated by the Lagrange method based on the Euler Bernoulli beam theory. A new type of modal function without iteration and approximate truncation is proposed based on the linear combination of Bessel and Meijer-G functions and it does not depend on whether the equation of motion of the wedge and cone beam in flexural vibration is a standard Bessel Form, which can quickly solve linear fundamental frequency and mode shape function. Subsequently, substituting the modal function obtained in this paper into the governing equation of the vibrating tapered cantilever, the curvature nonlinear coefficient and the inertia nonlinear coefficient are obtained. Finally, the amplitude-frequency response of the nonlinear primary resonance under a given vibration mode is determined using the method of multiple scales. The results show that the linear fundamental frequency and nonlinear amplitude-frequency response curves obtained by the method in this paper are highly consistent with the results of the existing literature. It can provide new ideas for the exact solution of wedge and cone cantilever beams.
关键词
欧拉伯努利梁 /
Lagrange法 /
Bessel 函数 /
Meijer-G 函数 /
非线性振动
{{custom_keyword}} /
Key words
Euler-Bernoulli beam /
Lagrange method /
Bessel function /
Meijer-G function /
nonlinear vibration
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Younis M I, Abdel-Rahman E M, Nayfeh A H. A reduced-order model for electrically actuated microbeam based mems [J]. Journal of Microelectromechanical Systems, 2003, 12(5): 672-680.
[2] Tan C A, Kuang W. Distributed transfer function analysis of cone and wedge beams [J]. Journal of Sound and Vibration, 1994, 170(4): 557-566.
[3] Silva C J, Daqaq M F. Nonlinear flexural response of a slender cantilever beam of constant thickness and linearly-varying width to a primary resonance excitation[J]. Journal of Sound and Vibration, 2017, 389: 438–453.
[4] 崔灿,蒋晗,李映辉. 变截面梁横向振动特性半解析法[J]. 振动与冲击,2012, 31(14): 85-88.
CUI Can, JIANG Han, LI Ying-hui. Semi-analytical method for calculating vibration characteristic of variable cross-section beam [J]. Journal of Vibration and Shock, 2012, 31(14): 85-88.
[5] 周坤涛,杨涛,葛根. 基于新型振型函数的渐细变截面悬臂梁的自由振动理论与实验研究[J]. 工程力学,2020, 37(3): 28-35.
ZHOU Kun-tao, YANG Tao, GE Gen. Theoretical and experimental study on free vibration of cantilever tapered beam base on new modal function[J]. Engineering Mechanics, 2020, 37(3): 28-35.
[6] 薄喆,葛根. 基于超几何函数和梅哲G函数的变截面梁的非线性振动建模及自由振动[J]. 振动与冲击,2019, 38(23): 77-83.
Bo Zhe, GE Gen. Nonlinear dynamic modelling and free vibration for a tapered cantilever beam based on hyper-geometric function and Meijer-G function [J]. Journal of Vibration and Shock, 2019, 38(23): 77-83.
[7] Mabie H H, Rogers C B. Transverse vibrations of tapered cantilever beams with end supports [J]. Journal of the Acoustical Society of America, 1968, 44(4): 1739-1741.
[8] Mabie H H, Rogers C B. Transverse vibrations of double-tapered cantilever beams with end support and with end mass [J]. Journal of the Acoustical Society of America. 1974, 55: 986-991.
[9] De Rosa M A, Auciello N M. Free vibrations of tapered beams with flexible ends [J]. Computers and Structures. 1996, 60(2): 197-202.
[10] Banerjee J R, Ananthapuvirajah A. Free flexural vibration of tapered beams [J]. Computers and Structures. 2019, 224: 1-6.
[11] Rao J S. The fundamental flexural vibration of a cantilever beam of rectangular cross section with uniform taper [J]. The Aeronautical Quarterly, 1965, 16: 139-144.
[12] Conway H D, Dubil J F. Vibration frequencies of truncated-cone and wedge beams [J]. Journal Application Mechnical. 1965, 32(4): 932-934.
[13] Naguleswaran S. A direct solution for the transverse vibration of Euler-Bernoulli wedge and cone beams [J]. Journal of Sound and Vibration, 1994, 172(3): 289-304.
[14] Gaines J H, Volterra E. Transverse vibrations of cantilever bars of variable cross section [J]. Journal of the Acoustical Society of America. 1966, 39: 674-679.
[15] Lee S Y, Ke H Y, Kuo Y H. Exact solutions for the analysis of general elastically restrained non-uniform beams [J]. Journal of the Applied Mechanics. 1992, 59: 205-212.
[16] Ho S H, Chen C K. Analysis of general elastically restrained non-uniform beams using differential transform [J]. Applied Mathematical Modelling. 1998, 22: 219-234.
[17] Hsu J C, Lai H Y, Chen C K. Free vibration of non-uniform Euler–Bernoulli beams with general elastically end constraints using Adomian modified decomposition method [J]. Journal of Sound and Vibration. 2008, 318(4-5): 965-981.
[18] Lee J W, Lee J Y. Free vibration analysis using the transfer-matrix method on a tapered beam [J]. Computers and Structures. 2016, 164: 75-82.
[19] Keshmiri A, Wu N, Wang Q. Free vibration analysis of a nonlinearly tapered cone beam by Adomain Decomposition Method [J]. International Journal of Structure Stability and Dynamics. 2018, 18(7): 1-19.
[20] 李伟,管鱼龙,谢浩等. 基于微分变换法的变截面振动研究及有限元数值模拟 [J]. 大学物理实验. 2020, 33(3): 5-9.
Li Wei, Guan Yulong, Xie Hao et al. Vibration research and finite element numerical simulation of variable section beam based on differential transformation method [J]. Physical Experiment of College, 2020, 33(3): 5-9.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}