为探究摇摆分量对输电塔线体系动力稳定性能的影响,以一实际输电塔为原型进行了动力时程分析,其中摇摆地震动采用改进的谱比法由地震平动中获取;根据增量动力分析(incremental dynamic analysis, IDA)方法结合B-R准则,分别对塔线体系在水平地震作用、水平-摇摆耦合地震作用和水平-竖向-摇摆耦合地震作用下的动力稳定性能进行分析。研究结果表明:摇摆分量及其引起的附加 效应会使输电塔线体系产生非对称振动,结构发生偏离平衡位置的单向偏移,从而导致塔线体系较仅考虑水平地震作用,更易动力失稳;重力和竖向地震响应下共同的二阶效应,放大了摇摆分量对结构动力稳定性能的影响,加剧输电塔线体系动力失稳破坏;发生动力失稳破坏时,薄弱区域主要集中于塔身中下部,杆件失效使得塔身局部变形过大,导致塔线体系发生整体动力失稳。
Abstract
To explore the influence of tilting ground motion to the dynamic stability of transmission tower-line system, the dynamic time history analysis of an actual transmission tower is carried out. Based on incremental dynamic analysis(IDA) method and B-R criterion, the dynamic stability of tower line system under horizontal seismic, horizontal coupled tilting and horizontal, vertical coupled tilting ground motion is analyzed. The results indicate that the rocking component and its additional second order effects of gravity will produce the asymmetric vibration to transmission tower-line system, the structure will have a one-way deviation from the equilibrium position, and make the tower system is more prone to dynamic instability than considering horizontal ground motion only. The influence of rocking component on the dynamic stability performance of the structure is amplified by second-order effect caused from gravity and vertical seismic response, and intensifies the dynamic instability and failure of the transmission tower-line system. When dynamic instability occurs, the weak area is mainly concentrated in the middle and lower part of the tower body, and the failure of the bar makes the local deformation of the tower body too large, leading to the whole dynamic instability of the tower-line system.
关键词
地震动摇摆分量 /
输电塔线体系 /
动力稳定性 /
增量动力分析(IDA)方法
{{custom_keyword}} /
Key words
tilting ground motion /
transmission tower-line system /
dynamic stability /
incremental dynamic analysis(IDA) method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杨 帆,杜文风. 输电铁塔结构非线性动力稳定研究的探[J]. 电力建设,2003,(12): 26-28.
YANG Fan,DU Wenfeng. Inquisition into Nonlinear Dynamic Stability of Transmission Tower Structure[J]. Electric Power Construction, 2003, (12): 26-28.
[2] 方春华,陶玉宁,张威,等. 长横担输电塔线体系动力响应分析及安全评估[J]. 自然灾害学报,2020,29(05): 209-220.
FANG Chunhua,TAO Yuning,ZHANG Wei,et al. Dynamic response analysis and safety assessment of long cross-arm transmission tower-line system[J]. Journal of Natural Disasters, 2020, 29(05): 209-220.
[3] 安利强,张志强,黄仁谋,等. 台风作用下输电塔线体系动力响应分析[J]. 振动与冲击,2017,36(23): 255-262.
AN Liqiang,ZHANG Zhiqiang HUANG Renmou,et al. Dynamic response analysis of a transmission tower-line system under typhoon[J]. Journal of Vibration and Shock, 2017, 36(23): 255-262.
[4] 余传运,张建润. 输电塔线体系动力特性及风振响应分析[J]. 东南大学学报(自然科学版),2019,49(01): 116-124.
YU Chuanyun, ZHANG Jianrun. Analysis on dynamic characteristics and wind-induced vibration response of transmission line systems[J]. Journal of Southeast University (Natural Science Edition) ), 2019, 49(01): 116-124.
[5] 田 利,董 旭,周梦瑶,等. 输电塔-线体系抗震研究综述[J]. 世界地震工程,2020,36(03): 201-212.
TIAN Li,DONG Xu,ZHOU Mengyao,et al. Review of seismic research on transmission tower-line systems[J]. World Earthquake Engineering, 2020, 36(03): 201-212.
[6] 张行,李黎,尹鹏. 地震作用下大跨越输电塔弹性动力稳定性能探讨[J]. 电力建设, 2008(11): 6-11.
ZHANG Hang,LI Li1,YIN Peng. Study on Large Span Transmission Tower Elastic Dynamic Stability under Earthquake[J]. Electric Power Construction, 2008, (11): 6-11.
[7] 李宏男,白海峰. 输电塔线体系的风(雨)致振动响应与稳定性研究[J]. 土木工程学报,2008,(11): 31-38.
LI Hongnan,BAI Haifeng. Dynamic behavior and stability of transmission tower-line system under wind (rain) forces[J]. China Civil Engineering Journal, 2008, (11): 31-38.
[8] 吉柏锋,瞿伟廉,王亮,等. 下击暴流作用下输电塔弹塑性失稳倒塌研究[J]. 中国安全科学学报,2014,24(12): 90-95.
JI Bai-feng,QU Wei-lian,WANG Liang,et al. Elastic-plastic buckling collapse analysis of transmission tower under downburst[J]. China Safety Science Journal, 2014,24(12): 90-95.
[9] Graizer V. Tilts in strong ground motion[J]. Bulletin of the Seismological Society of American,2006,96(6): 2090-2102.
[10] 魏文晖,黄玮松,薛广文,等. 多维地震作用下高柔结构的地震响应[J]. 华南理工大学学报(自然科学版),2017,45(08): 103-109.
WEI Wen-hui,HUANG Wei-song,XUE Guang-wen,et al. Seismic Response of High-Flexible Structure Under Multi-component Ground Motion[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(08): 103-109.
[11] Kalkan, E. and Graizer V. Coupled tilt and translational ground motion response spectra[J]. Journal of Structural Engineering,2007, 133(5): 609-619.
[12] 李宏男,王前信. 水平与摇摆地震动作用下大跨越输电塔体系的反应分析[J]. 工程力学,1991,(04): 68-79.
LI Hongnan,WANG qianxin. Response analysis of the system consisting of long span transmission lines and their supporting towers to horizontal and rocking seismic motions[J]. Engineering Mechanics, 1991, (04): 68-79.
[13] 田 利,李宏男. 输电塔线体系在多维地震激励下的响应分析[J]. 土木建筑与环境工程,2013,35(01): 86-95.
TIAN Li,LI Hongnan. Seismic response analysis of transmission tower-line system under multi-component ground motion excitations[J]. Journal of Civil and Environmental Engineering, 2013, 35(01): 86-95.
[14] 黄友钦,傅继阳. B-R准则在大跨空间结构风致动力稳定中的应用[J]. 广州大学学报(自然科学版),2012,11(06): 58-64.
HUANG Youqin,FU Jiyang. Applicability of B-R criterion in the wind-induced dynamic instability of large span spatial structures[J]. Journal of Guangzhou University (Natural Science Edition), 2012, 11(06): 58-64.
[15] 杨涛,王社良,刘德明,等. 基于IDA方法的小雁塔结构抗震性能评估[J]. 世界地震工程,2020,36(01): 162-174.
YANG Tao,WANG Sheliang,,LIU Deming,et al. Seismic performance evaluation of small wild goose pagoda structure
based on IDA method[J]. World Earthquake Engineering, 2020, 36(01): 162-174.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}