硬涂层减振是一项新兴的阻尼减振技术,硬涂层复合结构在随机激励载荷作用下的振动特性建模与分析方法还未开展研究。本文将有限元建模方法和虚拟激励法(pseudo excitation method)相结合,实现了随机激励作用下硬涂层悬臂薄板结构振动建模及减振性能预估。首先基于等效单层法创建了双面涂敷硬涂层的薄板结构振动特性有限元模型,得到了基础激励作用下包含涂层材料阻尼和剩余等效粘性阻尼的复合板结构的运动方程。接着,利用虚拟激励法,将平稳随机激励载荷谱转化为简谐激励,得到了硬涂层薄板结构在随机激励作用下的响应功率谱密度的求解方法。最后,以双面涂敷NiCrAl硬涂层材料的45#钢悬臂板为实例进行研究,利用所研发的方法计算了涂层板结构的固有频率及随机基础激励作用下的振动响应,并与实验数据进行对比校验。进一步,分析了涂层厚度、储能模量和损耗因子对悬臂板振动特性的影响。结果表明,适当增加上述涂层参数量值可有效提高硬涂层的减振效果。
Abstract
Hard-coating damping is a new damping and vibration reduction technology. The modeling and analysis methods of hard coating composite structures under random excitation load have not yet been studied. In this paper, the finite element modeling method and the pseudo excitation method (PEM) are combined to realize the vibration modeling and prediction of vibration reduction performance for the hard-coating cantilever thin plate structure under random excitation. First, based on the equivalent single-layer method, a finite element model of the vibration characteristics of the thin plate structure with hard coating on two sides is created, and the equation of motion of the composite plate structure including the coating material damping and the remaining equivalent viscous damping under the basic excitation is obtained. Then, using the pseudo excitation method (PEM) to convert the steady random excitation load spectrum into simple harmonic excitation, and the solution method of the response power spectrum density of the hard-coating thin plate structure under random excitation is obtained. Finally, a case study was carried out for a 45# steel cantilever plate coated with NiCrAl hard-coating material on both sides as an example. The natural frequency of the hard-coating plate structure and the vibration response under random base excitation are calculated using the developed method, and compare with the experimental data to verify. Furthermore, the influence of the thickness, storage modulus and loss factor of hard coating on the vibration characteristics of the cantilever plate is analyzed. The results show that an appropriate increase the values of coating parameters mentioned above can effectively improve the vibration damping effect of hard coating.
关键词
随机激励 /
硬涂层薄板 /
振动特性 /
虚拟激励法 /
涂层参数
{{custom_keyword}} /
Key words
Random excitation /
Hard-coating thin plate /
Vibration characteristics /
Pseudo excitation method /
Coating parameters
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Hassani S, Bielawski M, Beres W, et al. Predictive tools for the design of erosion resistant coatings [J]. Surface and Coatings Technology, 2008, 203(3): 204-210.
[2] Limarga A M, Duong T L, Gregori G, et al. High-temperature vibration damping of thermal barrier coating materials [J]. Surface and Coatings Technology, 2007, 202(4): 693-697.
[3] 孙伟,王茁. 基于自由振动衰减响应的硬涂层材料力学特性参数辨识 [J]. 振动与冲击, 2016, 35(24): 145-151.
SUN Wei, WANG Zhuo. Identification of the mechanical parameters of hard coating based on free vibration decay response [J].Journal of vibration and shock, 2016, 35(24): 145-151.
[4] Blackwell C, Palazotto A, George T J, et al. The evaluation of the damping characteristics of a hard coating on titanium [J]. Shock and Vibration, 2007, 14(1): 37-51.
[5] Ivancic F, Palazotto A, Cross C. The effect of a hard coating on the damping and fatigue life of titanium[C]//44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2003: 1689.
[6] Sun W, Liu Y, Du G. Analytical modeling of hard-coating cantilever composite plate considering the material nonlinearity of hard coating [J]. Mathematical Problems in Engineering, 2015, 2015.
[7] Filippi S, Torvik P J. A methodology for predicting the response of blades with nonlinear coatings. Journal of Engineering for Gas Turbines and Power, 2011, 133(4): 042503.
[8] Li H, Ying L, Sun W. Analysis of nonlinear vibration of hard coating thin plate by finite element iteration method. Shock and Vibration, 2014.
[9] 李然, 孙伟. 由涂层引入失谐的整体叶盘集中参数建模与振动特性分析 [J]. 机械工程学报, 55(19).
LI Ran, SUN Wei. Lumped-parametric Modeling and the Analysis of Vibration Characteristics of the Mistuned Blisk Introduced by Hard Coating [J].Journal of Mechanical Engineering, 55(19).
[10] Crandall S H, Random vibration of one-and two-dimensional structures [J]. Developments in Statistics, 1979,2:1-82.
[11] Itao K, Crandall S. Wide-band random vibration of circular plates [J]. Journal of Mechanical Design, 1978, 100(4): 690-695.
[12] Elishakoff I, Van Zanten A T, Crandail S H. Wide-band random axisymmetric vibration ofcylindrical shells [J]. Journal of Applied Mechanics, 1979, 46(2): 417-422.
[13] Dogan V. Nonlinear vibration of FGM plates under random excitation [J]. Composite Structures, 2013, 95: 366-374.
[14] Chen G, Zhou J, Yang D. Benchmark solutions of stationary random vibration for rectangular thin plate based on discrete analytical method [J]. Probabilistic Engineering Mechanics, 2017, 50: 17-24.
[15] 钟万勰. 一个高效结构随机响应算法系列——虚拟激励法 [J]. 自然科学进展, 1996(04):12-19.
ZHONG W X. A series of efficient structure random response algorithms - pseudo excitation method [J]. Progress in Natural Science, 1996(04):12-19.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}