不同立面收缩形式圆角弧边三角形超高层建筑的气动力特性

丁通,陈水福

振动与冲击 ›› 2022, Vol. 41 ›› Issue (4) : 70-76.

PDF(2236 KB)
PDF(2236 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (4) : 70-76.
论文

不同立面收缩形式圆角弧边三角形超高层建筑的气动力特性

  • 丁通,陈水福
作者信息 +

Aerodynamic characteristics of rounded corner arc triangular super high-rise buildings with different forms of facade contraction

  • DING Tong,CHEN Shuifu
Author information +
文章历史 +

摘要

为探索立面变化对圆角弧边三角形超高层建筑气动力特性的影响,采用风洞试验方法对6种立面收缩形式的建筑物进行了表面风压测试,研究了不同立面收缩形式、不同地貌和风向角情况下建筑三分力系数、横风向弯矩系数功率谱以及层脉动升力系数功率谱的变化特性。结果显示,锥度化和同向退台均可有效降低平均阻力系数、平均升力系数以及脉动升力系数,且降幅随锥度增大而增大,相比之下退台的效果更佳;两种退台旋转可更大程度减小三个平均分力系数和脉动阻力系数,并改变脉动升力系数和脉动扭矩系数峰值所对应的风向范围。随着锥度增大,横风向弯矩系数功率谱峰值频率右移,谱峰降低,采用退台则影响程度更大。退台旋转会使功率谱部分频段的能量明显超过同向退台情况,因为当旋转部分圆角迎风时,在两侧风弧面上加速的气流可对上方相邻退台的漩涡脱落起增强效应。

Abstract

In order to explore the influence of facade changes on aerodynamic characteristics of rounded corner arc triangular super high-rise buildings, the wind tunnel test method was used to test the surface wind pressure of buildings with six kinds of facade contraction forms, and the variation characteristics of three-component force coefficients, cross-wind overturning moment coefficients power spectrum, and layer fluctuating lift coefficients power spectrum angles under different facade contraction forms, landforms and wind directions were studied. The results show that both the tapering and setback can effectively reduce the mean drag coefficients, mean lift coefficients and fluctuating lift coefficients, and the decrease amplitude increases with the increase of the taper ratio. In contrast, the effect of setback is better. The two rotating setback can reduce the mean three-component coefficients and fluctuating drag coefficients to a greater extent, and change the wind direction range corresponding to the peak values of the fluctuating lift coefficients and fluctuating torque coefficients. With the increase of taper ratio, the peak frequency of cross-wind overturning moment coefficients power spectrum increases, and the peak of the spectrum decreases, which are more influenced by setback. The two rotating setback can make the energy of some frequency bands of the power spectrum exceed that of the case of setback, because when the rounded corner of the rotating part is windward, the accelerated airflow on the two arcs can enhance the vortex shedding of the upper adjacent part.

关键词

超高层建筑 / 立面收缩 / 圆角弧边三角形 / 风洞试验 / 气动力特性

Key words

super high-rise buildings / facade contraction / rounded corner arc triangular / wind tunnel test / aerodynamic characteristics

引用本文

导出引用
丁通,陈水福. 不同立面收缩形式圆角弧边三角形超高层建筑的气动力特性[J]. 振动与冲击, 2022, 41(4): 70-76
DING Tong,CHEN Shuifu. Aerodynamic characteristics of rounded corner arc triangular super high-rise buildings with different forms of facade contraction[J]. Journal of Vibration and Shock, 2022, 41(4): 70-76

参考文献

[1] 顾明, 张正维, 全涌. 降低超高层建筑横风向响应气动措施研究进展[J]. 同济大学学报: 自然科学版, 2013 (3): 317-323.
GU Ming, ZHANG Zheng-wei, QUAN Yong. Aerodynamic measures for mitigation of across-wind responses of super-tall buildings: state of the art[J]. Journal of Tongji University(Natural Science Edition), 2013 (3): 317-323.
[2] 黄剑, 顾明. 超高层建筑风荷载和效应控制的研究及应用进展[J]. 振动与冲击, 2013 (10): 167-174.
HUANG Jian, GU Ming. Control of wind loading and effects of super-tall buildings: state of the art[J]. Journal of Vibration and Shock, 2013 (10): 167-174.
[3] Kim Y C, Kanda J. Effects of taper and set-back on wind force and wind-induced response of tall buildings[J]. Wind and Structures, 2010, 13(6): 499-517.
[4] Kim Y C, Kanda J. Characteristics of aerodynamic forces and pressures on square plan buildings with height variations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(8-9): 449-465.
[5] Kim Y C, Kanda J. Wind pressures on tapered and set-back tall buildings[J]. Journal of Fluids and Structures, 2013, 39: 306-321.
[6] 谢壮宁, 李佳. 强风作用下楔形外形超高层建筑横风效应试验研究[J]. 建筑结构学报, 2011, 32(12): 118-126.
XIE Zhuang-ning, LI Jia. Experimental research on cross wind effect on tapered super-tall buildings under action of strong wind[J]. Journal of Building Structures, 2011, 32(12): 118-126.
[7] 张正维, 全涌, 顾明, 等. 锥度化方形截面高层建筑的气动力特性[J]. 西南交通大学学报, 2014, 49(5): 772-778.
ZHANG Zheng-wei, QUAN Yong, GU Ming, et al. Aerodynamic Characteristics of Tapered Tall Buildings with Square Section[J]. Journal of Southwest Jiaotong University, 2014, 49(5): 772-778.
[8] Deng T, Yu X, Xie Z. Aerodynamic measurements of across-wind loads and responses of tapered super high-rise buildings[J]. Wind and Structures, 2015, 21(3): 331-352.
[9] Tanaka H, Tamura Y, Ohtake K, et al. Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 107: 179-191.
[10] 邓挺, 谢壮宁, 石碧青. 强台风作用下不同退台方式对超高层建筑横风向风效应的影响[J]. 建筑结构学报, 2016, 37(12): 20-26.
DENG Ting, XIE Zhuang-ning, SHI Bi-qing. Effects of different setback measures on across wind effects of super-tall buildings under strong typhoon[J]. Journal of Building Structures, 2016, 37(12): 20-26.
[11] Kumar B E, Kim Y C, Yoshida A, et al. Aerodynamic characteristics of triangular-section tall buildings with different helical angles[C]//  Proceedings of the 13th ICWE. Amsterdam: Multi-Science Publishing Co. Ltd, 2011: 1-8.
[12] Kumar B E, Tamura Y, Yoshida A, et al. Experimental investigation on aerodynamic characteristics of various triangular-section high-rise buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 122: 60-68.
[13] Daemei A B, Khotbehsara E M, Nobarani E M, et al. Study on wind aerodynamic and flow characteristics of triangular-shaped tall buildings and CFD simulation in order to assess drag coefficient[J]. Ain Shams Engineering Journal, 2019, 10(3): 541-548.
[14] 石碧青, 谢壮宁, 倪振华. 用高频底座力天平研究广州西塔的风效应[J]. 土木工程学报, 2008, 41(2): 42-48.
SHI Bi-qing, XIE Zhuang-ning, NI Zhen-hua. Study on wind effects of guangzhou west tower using high-frequency-force-balance method[J]. China Civil Engineering Journal, 2008, 41(2): 42-48.
[15] 谢壮宁, 方小丹, 倪振华, 等. 广州西塔风效应研究[J]. 建筑结构学报, 2009, 30(01): 107-114.
XIE Zhuang-ning, FANG Xiao-dan, NI Zhen-hua, et al. Study on wind effects of the Guangzhou West Tower[J]. Journal of Building Structures, 2009, 30(01): 107-114.
[16] 李小康, 谢壮宁. 广州西塔气动荷载特性及风致响应研究[J]. 振动与冲击, 2012, 31(16): 104-110.
LI Xiao-kang, XIE Zhuang-ning. Aerodynamic wind loads on guangzhou west tower and its wind-induced response[J]. Journal of Vibration and Shock, 2012, 31(16): 104-110.
[17] 陈强, 陈水福. 复杂塔冠对双塔高层建筑风压特性影响的试验研究[J]. 建筑结构学报, 2018, 39(8): 26-35.
CHEN Qiang, CHEN Shui-fu. Test investigation on effect of complicated tower top on wind pressure characteristics of a twin-tower high-rise building[J]. Journal of Building Structures, 2018, 39(8): 26-35.
[18] Kwon D K, Kareem A. Comparative study of major international wind codes and standards for wind effects on tall buildings[J]. Engineering Structures, 2013, 51: 23-35.
[19] 潘忠岳. 高层建筑的风致响应及风荷载规范比较研究[D]. 湖南大学, 2012.

PDF(2236 KB)

Accesses

Citation

Detail

段落导航
相关文章

/