现场测试某地铁线路普通道床地段钢轨波磨和钢轨振动加速度,建立了地铁车辆-轨道耦合动力学模型,分析了不同特征钢轨波磨对轮轨系统动力特性的影响,提出了指导钢轨打磨控制波磨的波深安全阈值。结果表明:钢轨波磨主要发生在小半径曲线地段圆曲线内轨,主波长200~250mm,最大波深约0.8mm,直线地段出现短波波磨,主波长40mm,最大波深约0.1mm;波磨主要波长与轨道结构振动主频对应;钢轨波磨激励导致轨道结构振动较大,轮轨系统动力响应剧烈,尤其是70mm以下的短波波磨;轮轨垂向力呈周期性波动,波动周期与波磨波长相同,周期内1/4波长处轮轨冲击振动达到峰值;钢轨波磨对轮轨系统动力响应的影响随着波长减小、波深增大而加剧;现有规程中指导钢轨打磨的波磨安全限值适用于长波波磨,对于波长30、40、50、60mm的短波波磨,运营速度80km/h情况下,建议波深安全阈值为0.08、0.11、0.12、0.21mm,波深超出安全阈值后应及时打磨。
Abstract
The rail corrugation and the rail vibration accelerations in the common track bed section on a metro line were measured. The vehicle-track coupling dynamic model for metro was established to analyze the influences of rail corrugation with different characteristics on the wheel-rail system dynamic characteristics and to propose the wave depth safety threshold for rail grinding to control corrugation were determined. The results showed that rail corrugation mainly occurs on the inner rail in the small radius curve section with the main wavelength of 200~250mm and the maximum wave depth about 0.8mm. The short-pitch corrugation appears in the straight section with the main wavelength of 40mm and the maximum depth of 0.1mm. The main wavelength of rail corrugation corresponds to the main frequency of the vibration of rail structure. The rail corrugation, especially the short-pitch corrugation with wavelength below 70mm, causes strong vibration of rail structure and deteriorates the wheel-rail interaction. The wheel-rail vertical force fluctuates periodically with the wavelength of corrugation, which in one period the impact vibration of wheel-rail system reaches the peak value at 1/4 wavelength. The influence of rail corrugation on the wheel-rail dynamic response decreases with wavelength and increases with wave depth. The corrugation safety limits for rail grinding in the existing regulations are applicable to long-wavelength corrugation, but for the short-pitch corrugation with wavelength below 70mm, the corresponding wave depth safety threshold values of 30, 40, 50 and 60mm are recommended to be 0.08, 0.11, 0.12 and 0.21mm respectively at the speed of 80 km/h. It is needed to grind the rail in time when the wave depth of corrugation exceeds the safety threshold.
关键词
地铁 /
钢轨波磨 /
现场测试 /
车辆-轨道耦合动力学 /
安全阈值
{{custom_keyword}} /
Key words
metro /
rail corrugation /
field measurement /
vehicle-track coupled dynamics /
safety threshold
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 金学松,刘启跃. 轮轨摩擦学[M]. 北京:中国铁道出版社,2004.
[2] 李伟. 地铁钢轨波磨成因及其对车辆/轨道行为的影响[D]. 成都:西南交通大学,2015.
[3] GRASSIE S L, KALOUSEK J. Rail corrugation: characteristics, causes and treatments[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1993, 207(1): 57-68.
[4] GRASSIE S L. Rail corrugation: characteristics, causes and treatments[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223(6): 581-596.
[5] JIN X S, WANG K Y, WEN Z F, et al. Effect of rail corrugation on vertical dynamics of railway vehicle coupled with a track[J]. Acta Mechanica Sinica, 2005, 21(01): 95-102.
[6] JIN X S, WEN Z F, WANG K Y, et al. Three-dimensional train-track model for study of rail corrugation[J]. Journal of Sound & Vibration, 2006, 293(3): 830-855.
[7] 雷震宇,王志强,李莉,等. 地铁普通扣件钢轨波磨特性[J]. 同济大学学报(自然科学版),2019,47(09):1334-1340.
LEI Zhen-yu, WANG Zhi-qiang, LI Li, et al. Rail corrugation characteristics of the common fastener track in metro[J]. Journal of Tongji University (Natural Science), 2019, 47(09): 1334-1340.
[8] 王少锋,许玉德,周宇,等. 城市轨道交通曲线钢轨波磨检测与评价方法研究[J]. 城市轨道交通研究,2011,14(10):56-60.
Wang Shao-feng. Xu Yu-de, Zhou Yu. et al. Detection and evaluation of curve corrugation of urban mass transit[J]. Urban Mass Transit,2011,14(10):56-60.
[9] 宋小林,翟婉明,王开云. 波磨对轮轨系统动力特性的影响分析[J]. 中国铁道科学,2018,39(05):42-50.
SONG Xiao-lin, ZHAI Wan-ming, WANG Kai-yun. Effect of rail corrugation on dynamic properties of wheel-rail system[J]. China Railway Science, 2018, 39(05): 42-50.
[10] 刘国云,曾京,张波. 钢轨波磨对高速车辆振动特性的影响[J]. 振动与冲击,2019,38(06):137-143.
LIU Guo-yun, ZENG Jing, ZHANG Bo. Influence of rail corrugation on high-speed vehicle vibration performances [J]. Journal of Vibration and Shock, 2019,38(06):137-143.
[11] 李伟,曾全君,朱士友,等. 地铁钢轨波磨对车辆和轨道动态行为的影响[J]. 交通运输工程学报,2015,15(01):34-42.
LI Wei, ZENG Quan-jun, ZHU Shi-you, et al. Effect of metro rail corrugation on dynamic behaviors of vehicle and track[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 34-42.
[12] 郑炼鑫,杨建近,孙宇,等. 基于轮轨多点接触的浮置板轨道钢轨波磨安全限值分析[J]. 科学通报,2019,64(25):2590-2599.
ZHENG Lian-xin, YANG Jian-jin, SUN Yu, et al. Analysis on limiting value of rail corrugation of floating-slab track based on wheel/rail multi-point contact[J]. Chinese Science Bulletin, 2019, 64(25): 2590-2599.
[13] 翟婉明. 车辆-轨道耦合动力学(第四版)[M]. 北京:科学出版社,2015.
[14] JOHANSSON A, NIELSEN J C O. Rail corrugation growth-Influence of powered wheelsets with wheel tread irregularities[J]. Wear, 2007, 262(11): 1296-1307.
[15] BS EN ISO3095: 2013, Railway applications-acoustics-measurement of noise emitted by rail-bound vehicles[S]. London: British Standards Institution, 2013.
[16] Piotrowski J, Kik W. A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations[J]. Vehicle System Dynamics, 2008, 46(1/2): 27-48.
[17] TG/GW 102-2019,普速铁路线路修理规则[S]. 北京:中国铁道出版社,2019.
[18] GB 50157-2013,地铁设计规范[S]. 北京:中国建筑工业出版社,2014.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}